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S_Y

Analytic methods are developed for calculating blade loads and shaft-

transmitted vibratory forces in stiff bladed hingeless rotors operating at

advance ratios from _ = .3 to _ = 2.0.

Calculated shaft harmonic momentscomparedwell with experimental

values whenthe blade first flap frequency was in the region of two-
per-revolution harmonic excitation. Calculated blade bending momentazi-

muthal distributions due to changes _n cyclic pitch agreed well with ex-
periment at radial stations near the blade root at values of the ratio of

first flap frequency to rotor rotation rate from 1.5 to 5.0. At stations

near the blade tip good agreementwas only obtained at the higher values

of frequency ratio.

A compendiumof experimental shaft transmitted force and blade loads
_ata for two different rotor systems is included in _lume II.
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INTRODUCTION

Within the spectrum of VTOLaircraft types there is a class that must
have -i low downwashvelocity for efficient hovering and to avoid excessive

disturbance to the surface and persons standing below. It also must possess

high speed, long range, and flight characteristics that are not fatiguing
to the pilot or passengers even in gusty conditions. It must also possess
a low initial cost and inexpensive maintenance to be commercially or mili-

tRrily vi'_b!e.

The low downwash velocity in hovering flight demands a low disk loading

or large disk area per unit weight. At present this requirement can be met

only by large diameter rotors. The need for rotors designed for high for-

ward speed, low drag, rapid highly damped response to control motions, mild

response to gusts, and low vibration level has stimulated a search for a

simpler, more inherently stable rotor system than found on most helicopters

in operation today.

One approach to meeting these requirements has been the development of

the "hingeless" rotor. The hingeless rotor differs from those found in most

currently flying helicopters in that its blades possess only bearings for

feathering motion, which is controlled rather than free, and no flapping or

lead-lag hinges. The blades of most conventional helicopters are essentially

gimballed near the mast or they may be joined rigidly together and the whole

rotor gimballed to the top of the mast (teetering rotors).

%{o main advantages of the hingeless or cantilever-bladed rotor are its

ability to apply hub moments through the shaft to the body rapidly and of

generally greater magnitude than available from articulated rotors, and its

making available larger and more appropriately aligned damping forces due to

body pitch and roll rotation rates. These potential advantages, of course,

have long been appreciated in the helicopter world for the cantilever-bladed

rotor. They could not be taken advantage of in the past, however, due to

the extreme gust sensitivity of such a system and the extreme and variable

cross-coupling of the cyclic and lift producing controls.



With the development, over the past fifteen years, of the directly

geared gyroscope-stabilized feathering system, gust sensitivity and controls

cross-coupling have been greatly reduced and rapidly responding hir_eless
rotor helicopters with highly stable body modeshave been developed and demon-
-trated.

The development of the hingeless rotor gyroscope-stabilized system, how-

ever, has not been without its problems, most of which stemmed from the lack of

significant damping in the blade in-plane modes. As opposed to the flapping

modes which are highly damped by aerodynamic forces, the in-plane aerodynamic

damping is small. Under near 2P resonant conditions, the in-plane forces and

motions can combine with the flapping deflections and forces to nullify the

hub moment feedback path to the gyroscope and produce instability. This

particular problem has been solved in two ways. First, the in-plane reson-

ance has been kept to a low rotor rpm and tight control has been maintained

on the rpm to avoid the dangerous region. T.he second solution has been to

substitute direct hub moment feedback for the hub moment feedback via feath-

ering moments, thus eliminating the in-plane motion sensitive part of the

feedback path.

Another in-plane resonance problem occurs in rotors with more than three

blades. Pilot-induced oscillations can lead to high stresses in the reaction-

less modes. These modes are particularly lightly damped since there is no

shaft motion present in the mode and therefore no damping from the body.

Again, strictly keeping away from the resonance has been the solution.

One more possible consequence of light in-plane damping, which can be

avoided by careful distribution of mass and stiffness on either side of the

feathering hinge, is flap-lag instability. This is caused by coupling of

the in-plane and flap blade modes at high collective pitch and is discussed

in detail in Reference 1.

In recognition of the importance of in-plane motion to the development

of satisfactory hingeless rotors, the present study has investigated the

in-plane behavior of multibladed rotors.



Along with the large meanhub momentcapability of the hingeless rotor

comesinevitably the capacity to produce large oscillatory hub moments. As

long as the advance ratio stays well below _ = 1.0, however, they are nor-
mally not significant, except in certain transition flight conditions. But

at advance ratio greater than _ : i.O, the shaft vibration force levels

becomevery important. And since it appears that the next major developments
in hingeless rotor vehicles involve flying at advance ratios greater than

: i.O, the present study investigated shaft-transmitted vibratory forces
due to high advance ratio.

A basic problem in hingeless rotor design is the creation of section

structural properties that do not pick up excessive stresses under any
operating or transient condition and that at the sametime maintain radial

massand stiffness distributions which keep the desired characteristics and

avoid instability. In the next generation of hingeless rotor aircraft_

expected to operate at reduced rotor rpm and _> 1.0, this problem is
especially acute. Endurance limit stresses must not be exceeded if blades

of sufficient life expectancy are to be produced.

Becauseof the fundamental nature of blade stress determination to ad-

vanced rotor design, the azimuthal distribution of blade section flap bend-
ing momentwere investigated in this study.

The results of these studies are expected to provide a basis for the

systematic optimization of the design of the next generation of high speed

compoundhelicopters. This includes the slowed hingeless rotor compound
helicopter that cruises _t a speed of 300 to 350 knots with the rotor

slowed to as little as half the hovering rpm, and is characterized

by low rotor lift and advance ratio to _ : 1.5. It also includes, at some

fut_re date, the stowable rotor aircraft with the speed of fixed wing air-
craft_ low rotor lift during conversion, rotor slowed to zero rpm and then
stowed within the fuselage.

The specific purposes of this study were as follows:

I. Derive the equations of vertical and in-plane masselement motion

for three-and four-blade rotor-body free-flight configurations with

gyroscope-stabilized swashplates.



2. Analyze the equations for their steady harmonically forced
vibratory response in the form of meanand harmonic aeroelastic
shaft-transmitted forces.

3. Analyze the equations for blade section lift and flap bending
momentvariation with azimuth.

4. Analyze experimental shaft vibratory, and blade load data for three
rotors:

a. A 33-foot 3-blade rotor with a high constant speed gyroscope-
stabilized swashplate and fixed shaft.

b. A 7.5-foot 4-blade rotor with fixed shaft and swashplate.

c. The 35-foot 4-blade rotor of the XH-51Acompoundhelicopter in

free flight with a rotor speed gyro-stabilized swashplate and

the shaft restrained by the free body.

5. Comparetheory and experiment.

6. Parameter range for which the study is valid is as follows:

a. Stiff bladed rotors

b. High advance ratio

c. Subcritical advancing tip

P> 1.3.

_> .3.

Mlgo< .85.

Phase I of this study (References 2, 3, and 4) investigated the vertical

motions equations of the 33-foot 3-blade rotor. The meanhub and swashplate

momentand thrust meanaeroelastic derivatives were calculated, neglecting
the effects of the harmonic differential equation coefficients as is the

practice with conventional articulated rotors at low advance ratio. Good
agreementwas obtained with experiment at low values of advance ratio.

Cyclic pitch to trim hub and swashplate momentsto zero, control effectiveness,
and stability of the gyro-stabilized system were also investigated and
reasonable agreement found with experiment.

Equations of flapping motion, including aerodynamics, were found for
the 7.5-foot rotor by Sissingh and Kuczynski in References 5 and 6. The

meanaeroelastic derivatives of hub momentwith respect to cyclic and



collective pitch and angle-of-attack were calculated, including effects of

blade mean, first and second harmonic response. Goodagreementwas obtained
with experiment.

Effects of induced inflow and first and secondblade flapping modeswere

investigated by Ormiston and Peters in Reference 7. This study showedthe

necessity of including more than one flap modeif the ratio of flap frequency

to rotor rotational frequency was less than 1.3. It also showedthe large
influence of induced inflow at advance ratio _.3 and also that significant
effects of induced flow existed at all advance ratio.

The necessity of including the rotor and gyroscope degrees of freedom

in the equations of motion of the total airframe is shownby Heimbold and
Griffith in Reference 8.

Blade section aerodynamic lift and flap and in-plane bending moments

presented by Bartsch in Reference 9, Volumes I and II, and comparison with

comprehensivemethod results by Sweets, in Volume III, for flight tests of _

the XH-51Acompoundhelicopter, form a data base for assessing the validity

of the current formulation in the modest _ low flap frequency range.

Deckert and Mc Cloud analyzed 33-foot rotor data in Reference iO and

discovered that hub momentsproduced by cyclic pitch approach zero as rotor

rpm and advance ratio approach zero and infinity respectively, thereby

precluding their use in trimming meanhub moments. They also showedthat

small values of cyclic pitch were useful, at high advance ratio, in reducing
shaft vibration.

The experimental testing of the 33-foot 3-blade rotor analyzed under
this contract took Place in the NASA-AmesResearch Center 40 by 80 foot wind
tunnel. The maximumwind speed attained was 120 knots and advance ratios

of _ = .4, .5, .8, i.I, and 2.0 were tested over ranges of rotor rpm.

Four mass _nd stiffness configurations of the 7.5-foot 4-blade rotor

were tested in the U. S. ArmyAir Mobility R and D Laboratory, AmesDirect-

orate 7 by i0 foot wind tunnel. The advance ratio range extended from .29

to 1.75 and flap frequency ratio extended from P = 1.22 to 2.32.



Flight testing of the XH-51Acompoundhelicopter was performed by the

Lockheed-California Company,Rotary WingDivision.

The equations of motion derived in this study were programmedon the

IBM 360 digital computer, and the CPS (Conversational Programming System)

terminal was employed in the analysis of the experimental data.

In the design of compound helicopters for flight to advance ratios

greater than unity (_> 1.O) elimination of shaft-transmitted vibratory

forces and the control of blade stress excursions are expected to be the main

tasks. This study has indicated the nature and causes of these two phenomena

and provided a straightforward analytic tool for their prediction. The

groundwork has therefore been laid for the invention of devices, such as

harmonic swashplate control, and optimization of design for the minimization

of flight loads and vibrations in advanced hingeless rotor helicopters.

It is also possible, with vibration and loads calculable at extreme

values of design and flight operation parameters, that refinements in the

methods may be made which will allow calculations in the realm of the con-

ventional helicopter.
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SYMBOLS

Symbols and matrices employed in the vertical motions equations are

shown first. Those required for the in-plane equations follow, and sub-

scripts common to both systems complete the section.

b

b.m.

B

c

C1

C
m

C

C

m0

C T

ce_

C_

£S

D

F

number of blades

blade flap bending moment

tip loss factor

blade chord

blade root cutout fraction

hub pitch moment coefficient

hub roll moment coefficient

swashplate pitch moment coefficient

swashplate roll moment coefficient

thrust coefficient

blade section lift curve slope

feathering friction

swashplate damping

drag

jet engine thrust

ft-lb

ft

p (@R)S_Rs

ft-lb/rad/sec

ft-lb/rad/sec

ib

ib



H

H_o' H60' H6¢'
0

%

I
0

T

_G

l,x_, iyy

K
S

M

m

. H6¢6¢I"I_5o6o' HbO6e'

H e

He

P

pomo

blade flap generalized force

rotor flap generalized force

blade flap moment of inertia

blade moment of inertia about

the quarter chord

gyroscope diametral moment of

inertia

airframe pitch and roll moments
of inertia

mechanical advantage blades to

swashplate

swashplate spring

lift

hub rolling moment

hub pitch moment

blade mass distribution

rotor flap. generalized mass

swashplate pitch moment

swashplate roll moment

th
n flapping mode

th
p blade

ratio of blade first flap frequency
to rotor rotation rate

blade pitch moment about the quarter
chord

slugs ft 2

slugs ft 2

slugs ft 2

slugs ft 2

ft-lb/rad

ib

ft -ib

ft -ib

slugs/ft

ft-lb

ft-lb

ft -ib



q

r

R

t

T

V

W

X_ y_ Z

X_ Y, Z

b,o,6e ,S¢, 6

e

0

e
.75R

0
t

ee/4 (or ep)

(If

dynamic pressure

radial distance from shaft centerline

rotor radius

time

thrust

forward speed

blade root shear

airframe gross weight

rotor rotating axes

stationary axes

angle-of-attack

blade linear flap angle

rotor precone

fraction of critical damping

blade Lock number

blade parabolic mode tip deflection

rotor flapping mode deflection

swashplate tilt

collective pitch

collective pitch at three quarter

radius

blade twist rate

blade pitch about the quarter chord

blade feathering pitch

ib/ft 2

ft

ft

seconds

ib

ft/sec

ib

ib

deg or rad

deg or rad

deg or rad

c_ cR4

P

I b

ft

ft

rad

deg or rad

deg or rad

rad/ft

rad

rad



81c, 81s

®

A

P

¢

I

_p

*o

w6

;2G

[A]

JAR]

[B]

[BR]

[CF]

cyclic pitch

rotor-airframe pitch angle

b<ade forward sweep

advance ratio

air density

solidity

swashplate roll tilt

rotor-airframe roll angle

azimuth position of rotor

position of pth blade relative to

blade i

cant angle

blade first flap frequency

rotor rotation rate

gyroscope rotation rate

Matrices

aerodynamic stiffness, rotating axes

aerodynamic damping, rotating axes

aerodynamic forcing, rotating axes

aerodynamic stiffness, stationary axes

aerodynamic damping, stationary axes

centrifugal and structural

deg or tad

tad

deg e-_ ra_

slugs/ft 3

rad

rad

deg or rad

rad

deg or tad

rad/sec

rad/sec

rad/sec

i0



[_]

[_a]

[E]

1_-5-<j

[_:]

tft

trsl

t"t

transformation, rotor to blade freedoms

damping

centrifugal and structural, stationary axes

forcing matrix, stationary axes

rate of change of blade force with Y__lade

deflec+_ ion

inertia

airframe inertia

airframe aerodynamic stiffness

airfr_ne aerodynamic damping

airframe acceleration aerodynamics

centrifugal and structural, stationary axes

transformation from stationary to rotating

axes

forcing angles

rotor degrees of freedom

blade degrees of freedom

Additional symbols employed in the in-plane motions equations:

aof.

C:l
0

e

blade axial force

minimum drag coefficient

pivot radial position

ib

ft

ii



Fip

_o' _e' _¢

shaft

pivot

I R

Jb_ Kb, _ _ K
e5 eb

K
Y

K
X

L
P

2_b

MR

n.f.

N

p.t.

r

c.g. •

s.t.

U

V

X

X

blade in-plane force ib

rotor in-plane mode generalized force

blade moment of inertia about the shaft slugs ft2

blade moment of inertia about the pivot

hub moment of inertia

blade inertia parameters

slugs ft 2

slugs ft 2

body lateral spring to ground ib/ft

body longitudinal spring to ground ib/ft

th
lift on p blade ib

blade mass slugs

hl_ mass slugs

blade normal force ib

rotor yawing moment ft-lb

blade pivot torsion ft-lb

blade center of gravity radial ft

distance

blade shaft torsion ' ft-lb

blade normal displacement ft

blade axial displacement ft

longitudinal displacement ft

longitudinal force ib

12



Y

Y

t

K

V

_ip

[COR]

lateral displacement

lateral force

blade rotation about its pivot

rotor mode deflection

ratio of inclination of blade

in-plane principle axis to

feathering pitch

blade rotation about the shaft

blade non-rotating undamped natural

frequency

Coriolis force matrix

Subscripts

O, ic, is, 2% 2s .... harmonic component

c/4

-I

f

g

n

n

P

i, 2 ,..., p ,..., b

r

.75_

about the quarter-chord

differential collective mode

feathering

gust

lift

normal to blade leading edge

th
n mode or harmonic

th
p blade

blade numbering sequence

rotating axis system

blade three-quarter radius

ft

ib

rad

rad

rad

rad/sec

13



xy

_Z

Z

in-plane equations o_ in-plane

rotating axes

in-plane stationary _.zis system

vertical equations o_rrvertical system

rotating axes

vertical system, stationary axes

Less frequently used s_ols are defined in the text.
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HINGEI_SS ROTOR TYPES STUDIED

In this report a set of stiff-bladed hingeless rotors operating at high

advance ratio is considered. Its selection was based on the desire to study

rotors that could be employed in future vehicle concepts. Therefore, those

aspects of the advanced helicopter design that cross into the well-understood

areas of conventional helicopters, such as hover and low advance ratio flight,

are not studied.

This philosophy crystallized into the consideration of rotors which could

be applied to the two following types of vehicle:

i. Slowed hingeless rotor winged compound helicopter

2. Stowable rotor aircraft

These considerations resulted in the decision to study only the high advance

ratio flight range .3<_<_; and rotor blades with flapping stiffness in the

range 1.3< P_. It further resulted in limiting the flight regions to low

lift values and subcritical advancing blade tip Mach numbers.

The blades, experimentally investigated, had inoptimum structure and there-

fore low Lock numbers, but this is not considered to restrict the applicability

of the theory correlation.

Because the rotors were of the hingeless type, the minimum number of

blades considered was three. Four-blade rotors were also extensively studied.

The theoretical derivations were extended to any number of blades.

Since such rotors can be employed with gyroscope-stabilized feathering

systems, blades swept forward of the feathering hinge and corresponding feath-

ering moments and degrees of freedom were considered throughout the analyses.

Geometry Variations

The variations in blade geometry considered in this study are as follows:

Radius R ft

Chord c ft

Sweep angle A radians

15



z

_m

Cutout fraction CI

Precone _o radians

Twist rate et radians/ft

These are illustrated in Figure I. It should be noted that both the

locus of quarter chord points (along the r-axis) and the feathering axis

pass through the center of the shaft or center of rotation (the z-axis).

In blade configurations in which the quarter chord or hinge lines do not pass

exactly through the center of rotation, fictitious hinge lines and quarter

chords may be assigned with little loss of precision.

The analyses presented in this report are valid for precone and twist

values that do not seriously violate small perturbation values (say up to I0=)

and for any value of blade radius. Chord lengths, on the other hand, should

not exceed a chord-to-radius ratio of about I/i0 or blade section aerodynamic

pitch damping, neglected in the theory, may become significant. Blade tor-

sional deformation, neglected in these analyses, can also result in significant

changes in blade airloads should the ratio of aerodynamic moment to torsional

rigidity become large enough.

Sweep angle and root cutout values may be of any magnitude.

INGE
ENTER OF AXES , LEADING

ROTATION EDGE

3/4 CHORD LOCUS

CHORD LOCUS

m

N

ASWEEP ANGLE I
I

etR

/

Figure i. Blade Geometry
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The particular equations derived to completion in this report are for

three- and four-blade rotors but indications are given at every step as to

the procedure to follow to extend the derivation to rotors with 5, 6, ....

n blades.

In considering the complete rotor, an axis system rotating with the

blades is required to act as a reference for the location of each of the

blades. It is denoted by lower case letters. The axis system is selected

so that the positive z-axis runs along the shaft upward, in its nominal un-

tilted position. The axes rotate with the rotor but are not attached to it,

for the rotor can pitch, roll, plunge_ surge_ sideslip_ and yaw relative to

the rotating axis system. The x-axis runs along the nominal position of the

number one blade quarter-chord locus, if precone is zero (Qtherwise normal to

the z-axis). The y-axis extends normal to the x_ z plane, positive to the

right_ to form a right-handed axis system.

The blades are numbered in ascending order moving around the rotor in a

clockwise direction so that, to an observer on the ground watching the blades

go by, the blades would appear in the order i, 2 7 3,..., n, i, 2, 3,..,

The arrangement of blades and rotating (lowercase) axes is shown in Figure 2.

z

RODS TO SWASHPLATE \ (_)

\
Y

Figure 2. Rotating Axis System and Blade Numbering

17



The figure also shows schematically the attachment of the blade feathering

horns to the swashplate via the stabilization gyroscope, in the general case of

this report. Tilting the swashplate, and the parallel gyroscope, causes the

blades to feather cyclically. The relationship between swashplate tilt and

blade feathering is shown in Figure 3.

tilt relative to rotating axes is denoted by er, _r pitchSwashplate

and roll about the y and x axes respectively. Because of the blade feath-

ering arm and linkage geometry, pitch and roll do not separately produce purs

"cyclic pitch" of the blades as is usually the case with articulated rotors.

("cyclic pitch" here is relative to rotating axes.) This slewing around of

the gyroscope (and swashplate) relative to the blades is denoted by _o' the

cant angle, and is shown in Figure 3. By this definition, most articulated

rotors would possess a cant angle of ninety degrees (@o = 90°)"

18

Figure 3. Cant Angle and Mechanical Advantage



Cant angles different from 9O° are employed in gyroscope-stabilized

hingeless rotors for purposes of free-flight stability. If the shaft is

prevented from pitching and rolling, as is the case during wind tunnel

testing_ the rotor-gyroscope stability is not affected by cant angle. It
should be noted that the cant angle is relative to the blade feathering axis.

The blade quarter chord leads the feathering _:is by the sweepangle.

In order to allow the use of a smaller gyroscope the gyro arm is made
shorter than the blade feathering horn arm so that the gyro tilt angle is

somewhatgreater than the maximumfeathering displacement. This is called

mechanical advantage.

k --

Horn arm
Gyro arm

- Mechanical Advantage

Mechanical advantage is such that values greater than about 1.5 are

difficult to achieve mechanically.

Degrees of Freedom

The geometric form of the rotor systems studied in this report has been

discussed in the previous section. It was necessary to establish a reference

axis system rotating with the rotor in order to describe the blades, linkages.

gyroscope, and rotating part of the swashplate. Similarly, in order to dis-

cuss the rigid body to which the rotor is attached and the stationary part of

the swashplate, it is necessary to establish a second reference axis system

that is stationary. Denoted by capital letters, this system employs the same

vertical or Z axis as the rotating system. Its X and Y axes, however,

do not rotate but remain fixed relative to the earth. (In actual fact they

translate with the mean forward speed of the vehicle.) The X or longitudinal

axis is positive in the nominal aft direction of the body and the Y axis ex-

tends normal to the X, Z plane positive to the right, again formir_ a right

handed system. Both axis systems are shown in Figure 4.

The rotating axes are related to the stationary axes by the rotation

angle 4, which is a function of time. Since the rotation rate is assumed

to be constant in these analyses, @ = _t

19



Z z

Figure 4. Stationary and Rotating Axes

where _ = the rotor rotation rate radians/sec

t = time in seconds.

Perturbational motions of the rotor and shaft, described in terms of

degrees of freedom in the rotating axis system, may be transformed to station-

ary axes. In this form the shaft motions are in a convenient form to include

the rigid motions of the vehicle body.

It is clear, therefore, that the degrees of freedom of the system may

be described in rotating or stationary axes. (There are some exceptions which

will be noted later.) Motions of rotating parts are basically described rela-

tive to rotating axes and motions of stationary parts relative to stationary

axes. The complete set of motions equations could be described in either

coordinate system. In these analyses, however, the rotor alone i_ described

in rotating axes; its equations of motion are transformed to stationary axes

and these are combined with the body equations of motion and solved in

stationary axes.

2O



Whether thought of relative to rotating or s_tionary coordinates, the
rotor-gyroscope-body motions have been separated _o two sets for the pur-
pose of this study; those that produce perturbational mot_s of the elements

of massessentially in the vertical direction, and those that produce mass
element motions essentially in the plane of the rotor disk. The two sets of

degrees of freedom can only be separated in the small perturbation motion
sense since nonlinear coupling between the two sets becomessignificant with

increasing blade loads and displacements.

It should be noted that the vertical motions equations are solved com-

pletely independently of the in-plane motions equations. The in-plane motion
equations forcing functions, however, are produced almost entirely as a by-

product of the motions of the vertical equations degrees of freedom and their

aerodynamic forcing functions.

The two sets of degrees of freedom will be described separately in the

following:

Vertical motions of mass elements. - The degrees of freedom employed in

describing those motions of the rotor-gyroscope-body system that are essen-

tially in the vertical direction can be most easily pictured relative to sta-

tionary axes (with one exception, discussed later). Figure 5 shows the sta-

tionary X, Y, Z axes degrees of freedom of a 5-blade rotor. The set for

3-blade rotors is obtained by deleting the two scalloped disk flapping modes

62c and 62s , the reactionless flapping c_.ine and sine degrees of freedom.

For rotors with even numbers of blades 4, 6, ..... etc, in addition to the

reactionless modes existing in pairs, there is a single reactionless mode,

sometimes called the differential collective mode (or degree of freedom). It

is characterized by the blades being alternately up and down.
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Figure 5. Vertical Motion Degrees of Freedom in Stationary Axes
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In this report the degrees of freedom are arranged in vectors in a fixed

order to facilitate marrY: algebra. For 3-, 4-, and 5-blade rotors the

vectors of degrees of freedom in stationary axes _e as follows:

3-blade rotor

G

¢

z

e

¢

6
o

6 e

BZ =

4-blade rotor

z

6
o

6 e

6¢

6d

9Z =

5-blade rotor

®

¢

z

e

5
o

6_

6,

52c

52s

NOTE: i. Subscript Z denotes stationary axes.

2. Subscript d denotes differential collective mode.

The degrees of freedom have been shown in stationary coordinates for

the sake of clarity but they_ in fact, represent the end product; the form

in which they are employed in the equations of motion to be solved.

In order to obtain these degrees of freedom a parallel set in rotating

coordinates must be transformed to stationary axes. The rotating axis de-

grees of freedom employ the same symbols as the stationary axis modes but are

differentiated by subscript "r." They look the same as the stationary modes

but the mode shapes are relative to the rotating x, y, z axis system and

remain undistorted as the rotor rotates or are independent of azimuth (the

number one blade lies along the x-axis at all values of azimuthal orienta-

tion of the rotor).

The transformation from rotating axis degrees of freedom to stationary

axis degrees of freedom must therefore be a function of azimuth or time if

the rotation rate is constant.
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82s r

The transformation for the 5-blade rotor is as follows:

cos $ - sin

sin @ cos '_

i

z - rotating axes

Z - stationary axes

cos _ - sin

sin @ cos

i

cos _ - sin

sin _ cos

cos2 _- sin2 @

sin2 @- cos2

®

Z

%

8
o

80

6_

62c

82s

For the 3-blade rotor the transformation is as above with the last two

rows and columns deleted. For the 4-blade rotor the last row and column are

deleted and the lower right corner element cos 2 _ is replaced by i.

For aircraft body and gyroscope (or swashplate) angular motion and rotor

disk tilt, unit values of displacement in stationary coordinates are equivalent

to displacements in rotating coordinates which vary sinusoidally once per rev-

olution with azimuth. For example, a unit value of body pitch in stationary

coordinates _ = 1.0 radian is equivalent to the following sinusoidal varia-

tions with azimuth in rotating coordinates:

®r = O cos

= _)sin
r

Body plunge, collective flapping and, for the four-blade rotor, the

differential collective mode are the same in both coordinate systems.
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Constant reactionless flapping displacement in stationary coordinates,

however, is equivalent to reactionless flapping in rotating coordinates that

varies with the second harmonic of azimuth. For example, if the disk of a 5-

blade rotor took up a constant cosine scalloped shape in stationary coordinates,

6 ,the equivalent motion in rotating coordinates varies with azimuth as follows:
2c

62c = 62c cos 2
r

62s = 62c sin 2
r

The relationship between rotating and stationary axes vectors of degrees

of freedom is also expressed in this report for the sake of conciseness, in

vector notation,as follows :

Bz : ITzl 8 Z

z = rotating axes

Z : stationary axes

Although the equations are employed in stationary coordinates, they came

into that form through the application of the ITzl transformation to the
L J

more fundamental equations of motion derived relative to rotating coordinates.

It is necessary, therefore, to first develop the equations relative to ro-

tating coordinates or the relationship between the motions and the generalized

forces of the rotating degrees of freedom.

The first step in this development is the determination of the kinematic

relationship between the motions of the individual blades in their single-

blade degrees of freedom and the motions of the complete rotor in its rotating

degrees of freedom. The relationship is independent of the azimuthal position

of the rotor. This forms the subject of a later section.

Motions of the rotor in its rotating degrees of freedom may be described

in terms of the single blade degrees of freedom (shown in Figure 6).

The vertical single blade degrees of freedom may be arranged in a vector

to facilitate matrix algebra,
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Figure 6. Single Blade Vertical Degrees of Freedom
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The pitch, roll, and plunge motions of the rotor disk are composed of the

first three blade freedoms: linear flap _, vertical plunge z, and blade

feathering _p. Gyroscope (and swashplate) pitch and roll are composed of

blade feathering and linear flapping (due to the sweep of the feathering hinge).

Rotor disk collective, pitch and roll and reactionless flapping modes are all

defined in terms of the blade parabolic or first flap structural mode.

The vertical motions equations contain only the first blade dynamic

flapping mode.

In-plane motions of mass elements. - The stationary axis degrees of free-

dom employed to describe rotor motions essential_ r in the plane of the disk

are as shown in Figure 7. The freedoms shown are for a five-blade rotor.

Deletion of the cosine and sine reactionless lead-lag freedoms provides the

set needed for a three-blade rotor. Four-blade rotors require the addition

of one differential collective lead-lag mode to the three-blade set. It is

the same in rotating and stationary axes.

The number of blades shown in Figure 7 is arbitrary; the displacements

merely show the deflected positions the blades would occupy at that azimuth.

It should be noted that positive lead-lag is lead or counterclockwise structural

deflections. (This is opposite the convention in Reference ii but is used

since all counterclockwise displacements are to be positive, as is the normal

mathematical convention.) At this point, the blade in-plane deflection mode

has not been defined.

The" in-plane degrees of freedom in stationary axes are arranged in vectors

to facilitate matrix algebra, as were the vertical motions freedoms.
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Figure 7. In-Plane Motions Degrees of Freedom in Stationary Axes
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3-blade rotor

Y

x

Bx_= _o

_y

_x

4-blade rotor

Y

x

_y

_x

_d

5-blade rotor

Y

X

U

_xY = _o

_y

_x

_2c J

_2s ]

Compared to the vertical motions degrees of freedom, a motion equivalent

to swashplate tilt is missing. The in-plane motions are therefore described

by two fewer degrees of freedom than the vertical motions.

The next step is to visualize these modes in axes rotating with the

rotor. The lower case x, y label for rotating axes replaces the uppercase

X_ Y of the stationary axes system but the modes maintain the same shape.

The major difference now is that the blades maintain fixed azimuth positions

relative to the x, y axes. The x-axis is always directed through the axis

of rotation parallel to the number (i) blade quarter chord line and the blades

are numbered in ascending order as they pass a fixed azimuth position. The

azimuth location of the pth blade relative to number (i) blade is

2w

_p = - (p-l)

where b is the number of blades.

The rotating axis degrees of freedom employ the same symbols as the sta-

tionary axis freedom but differentiated by subscript "r."

Vectors describing the in-plane rotor motions in rotating degrees of

freedom may be transformed to stationary axes degrees of freedom by a sine-

cosine transformation very similar to the one employed for the vertical mo-

tions. For five-blade rotors, the transformation of rotating axes freedoms

to stationary axes is as follows:
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Yr

X
r

U
r

_or

_yr =

_×r

_2c
r

_2s
r

For 3-blade

D

COS ¢ - sin @

3in @ cos $

i

i

cos ¢ - sin

sin @ cos @

cos 2 ¢ - sin 2

sin 2 @ cos 2

rotors, the last two rows and columns are deleted.

Y

X

U

_o

%
4

_2c

_2s

For

4-blade rotors, i.O is added to the lower right corner of the 3-blade mo-

tions expanded by one row and column.

The above relationship is also expressed in matrix form as follows:

Bxy = ITxyl BXy

Vector subscripts

xy - rotating axes

XY - stationary axes

Before the equations of motion in rotating axes can be developed it is

necessary to determine the kinematic relationship between motions of indi-

vidual blades in their single-blade degrees of freedom and the motions of the

complete rotor in its degrees of freedom relative to axes rotating with the

rotor. This is the subject of a later section.

Motions of the rotor in its rotating degrees of freedom may be described

in terms of the single blade degrees of freedom shown in Figure 8. The first

flexible mode has been defined to be a straight line lead-lag with an offset

pivot. This mode shape was assumed after an inspection of experimental mode

shapes for the 33-foot rotor. Examining the reasons for its very close ap-

proximation to this shape, it became evident that all hingeless rotors with

relatively flexible root sections in-plane and relatively stiff in-plane blade

35



RIGID BODY LEAD-LAG TRANSLATION u

I i
r II _ _ D E |

I_ l

RIGID BODY SPANWISE TRANSLATION v

V

RIGID BODY ROTATION v

V

FLEXIBLE FIRST LEAD-LAG MODE

Figure 8. Single Blade In-Plane Degrees of Freedom
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stiffness outboard would have shapes of this type. The specific shapes and

frequencies, etc., will be discussed in a later section, as they vary with

rpm.

The single blade degrees of freedom may be arranged into a vector for

matrix operations:

 xyp =

The rotor in-plane degrees of freedom relative to coordinates rotating

with the rotor are composed of the single blade degrees of freedom. The only

structural dynamic mode included is the first in-plane lead-lag mode denoted

Higher dynamic modes have not been included in this analysis.

The lateral and longitudinal degrees of freedom Yr and Xr in ro-

tating coordinates are composed only of u and v single blade degrees of

freedom. The rotational mode _ is composed only of the blade rigid body
r

rotation mode _J. All the remaining rotor degrees of freedom, relative to

rotating axes are lead-lag modes and are composed solely of flexible first

lead-lag blade degrees of freedom {.

Kinematic Relationships

In this section the rotor degrees of freedom relative to rotating axes

are defined in terms of single blade degrees of freedom. The kinematic re-

lationships between the two sets of freedoms, for each set of motions, verti-

cal and in-plane, are expressed as transformation matrices

Sets of degrees of freedom for vertical and in-plane motions are treated

separately.

Vertical motions blade-rotor kinematics. - Arranging the single blade

degrees of freedom in a vector facilitates the matrix algebra and allows the

displacements of the pth blade to be represented by a single symbol _z
P
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where

r_Z

P

Bp

z
P

e
P

6
P

The blade motions may then be expressed conveniently in terms of rotor

motions in degrees of freedom relative to rotating axes.

_z = Dz _z
P . P]

where p indicates the blade number. Rewriting:

_r

_r

z r

8p

P z

e
p

6
p

er

6
o
r

6e
r

r

62c
r

62 s
r

for a five-blade rotor
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whero]isz

-_B__ _ d_p _ _ dBp _ _ d___d_p--d--_ d@ ci_ d6 d6 8 d6#d@r r r r r o
r r r r r

_ dz dzdz dz dzp
d@r r r r r o

r r r r r

r r r r o
r r r r r

d6p d__ _ d_ d__ _ d6p _ d6p d6p
d% d@ dz d8 d_ d6 d6@ d8 d82c dO2s

r r r r o Or- r r r r

The next task is to define the motions of the individual blades in terms

of those of the rotor, the elements of the matrix. The motions of the blades

are relative to the blade line of aerodynamic centers (or quarter chord)

projected into a plane normal to the undeflected rotor shaft.

Consider a rotor with b number of blades with the number i blade located

along the +x axis (the axes rotate with the rotor). The position of the

locus of aerodynamic centers of blade p is located at:

2

*p =- (p-i) b

which is an important relationship in determining blade motion relative to

rotor motion.

@
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Blade motion due to shaft motion - Blade rigid flapping and pitching about

the aerodynamic center are the only blade motions resulting from shaft pitch

and roll displacements.

_ _ Y

_r
I

x

The rigid flapping of an arbitrary blade p due to shaft motion is:

6p = -®r cos @p + @rSin @p

=-% cos (p-l)
2

b

2 I_

sin (p-l)r

The pitching of blade p due to shaft motion is:

@ = ® sin _ + @ cos
p r p r p

2 _ 2 n

8 = -®r sin (p-l) _ + ¢ cos (p-l)p r b

Rotor plunge motion produces only blade plunge motion.

the relationship is merely: z = z.
P

For a blade p,

In matrix notation the blade motion due to shaft motion is:
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Zp

8
P

b

ip

-- ___..-- -- b

- b

0
0

( ---sin p-l) e _ cos p-l) 2___ b
< b

0
0

i

0

r

r

where P = i, . , b.

Blade motion due to gyro motion: Gyro pitching and rolling motion causes

blade pitching and flapping relative to the blade quarter chord axis. In

order to resolve the gyro motions into blade motions, define the axes Xb and

Yb: 8b Yb

.6/

FEATHERING
HINGE NO.

BLADE

A

/
/

/
/

/
/

\

\
\
\
\
\

,% \
×b

X

whe re :

cos (¢o _ r
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Positive values ior eb and _b swashplate deflections produce

positive blade feathering angles at _ = 180" and 90" respectively. Note

that the blade feathering axis is located behind the quarter chord axis by

the angle A. However, the azimuth position is measured relative to the

quarter chord axis.

is:

With the above in mind, the feathering angle of a blade located at _p

P = _ - _ cos @p + ¢b sin

ef - i eb cos (p-i) 2k b
P

i _*b sin (p-l) 2k -6-

or in matrix notation:

= - _ os (p-l) -_

where k is the gyro to blades mechanical advantage.

The relationship between blade feathering about the feathering axis to

pitching and flapping relative to the quarter chord axis is:

Now the motions about the quarter chord can be expressed in terms of the

swashplate angles 8r and _r:

I 1 i I sin A
Bp : _

[cos A isin (p-i) 2__b__[sin (@o A) cos (_o A) _r
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therefore:

r

llsinil I[°s°Asin°A1i • 2 w 2bWof (p-l) --if- sin (p-l) m

cos [sin(t° A) cos(t° ^)

and:
V i

I Bp

P

6
P

L J

D

dBp dSp

de _
r

0 0

d8
r

0 0

Blade motion due to rotor flexible flapping motion: Blade flapping

displacements are limited to the first flap mode, various combinations of

which make up the rotor flapping modes. In rotating coordinates, the number

of rotor modes will then equal the number of blades. A 2-blade rotor would

have a collective and a pitch (or roll) flapping mode; whereas a 3-blade

rotor would have both pitch and roll flapping modes, plus the collective

mode. A h-blade rotor would additionally have a self-balancing rotor mode,

which would produce no inertial forces in the earth-fixed axes system. A

5-b!ade rotor would have two self-balancing modes.

For example, the modes of a 4-blade rotor would be as follows:
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PITCH
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The relationship between the rotor flapping modes and the flapping of a

blade at @p is:

6p = - 6ne cos n _p + 6n_ r sin n _p
r

2
6 : cos n (p-l) 6
P - 6ner b nCr

2 TT

sin n (p-l) b

For rotors with an even number of blades:

n = i, .... , O.5b

For rotors with an odd number of blades:

n = i_ .... , 0.5 (b-l).

_4



where n is a number representing the harmonic shape of the mode relative

to the axes rotating with the rotor. For example, n = i represents rotor

disk tilting relative to the shaft; n = 2 represents a scalloped shape for

the rotor tips with two lobes up and two down regardless of the number of

blades.

Substituting the required values of n yields the modes. Thus:

2 w 2 _
6 = - 6 cos (p-l) 6 sin (p-l) n = i
p 8r b __r b

2 TT
6 =- 6 cos 2 (p-l)p 2c --b 62 s

r r

sin 2 (p-l) 2 w
--_- n = 2

2
6 : - 6 cos n (p-l) 6
p ne b ns

r r

sin n (p-l) 2

In addition, the collective mode will be:

6 = 6
p o

in matrix form:

B

Bp ©

z 0
P

e 0
P

6 1
P

0 0 ... 0

0 0 ... 0

0 0 ... 0

- cos (p-l) 2 w ... - sin n (p-l)b - sin (p-l) 2b n

6
o

68r

.

6
nc

6 r
ms

r

In summary, the transformation matrix relating blade motions of the

degrees of freedom in rotating axes are as shown on the following page for the

five-blade rotor:

In-plane motions blade-rotor kinematics With the in-plane displace-

ments of the pth blade represented by the vector:
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U

P

V

P

_Xyp-- _
P

6
P

the relationship between the dispacements of degrees of freedom of the rotor

relative to rotating axes and the displacements of the pth blade may be ex-

pressed as follows:

i0i
where B is the vector of displacements of the rotor degrees of freedom

xy
relative to rotating axes.

Determination of the elements of the (Dxypl,,matrix,or the pth blade mo-

tions that occur due to the motions of each of the rotor degrees of freedom

follows.

DUE TO UNIT y DISPLACEMENT:

y- |.0

\ \ \_Up

× P

FOR "[.HE P TH BLADE

u =COS $
P P

__ y v = SIN $P P

WHERE _ =- (Io-1) 2-.--Z_
p b
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DUE TO UNIT x DISPLACEMENT:

f

x p

--y

FOR THE PTH BLADE OFA

"b" BLADED ROTOR

u --: -SIN _'
P P

v = COS ,_-
P P

DUE TO UNIT vDISPLACEMENT:

/ \

/ \
/ \

/ I
I --' --_ _ Jf_____ y

I
×

Up -- 1.0
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DUE TO UNIT _'o DISPLACEMENT:

f

/ \
/

/ I \
i \

I -- I

x

y _'p= 1.0

Due to unit _y displacement:

_p = - cos @p

Due to unit _x displacement:

_p = sin @p

Due to unit _2c displacement: °

_p = - cos 2 _p

Due to unit _2s displacement:

_p = + sin 2 _p

If more than five blades are employed in the rotor design_ then a gen-

eral expression for blade displacement due to unit reactionless mode displace-

ments can be used.

For unit reactionless mode dispacements _mc and _ms' where m = i,

2...n

b
n : - for even numbers of blades r_

2
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and
b-1

n = -- for odd numbers of blades
2

b = number of blades

the displacements of the pth blade become

_p = - cos m_p

_p = sin m_p

Theoretical Considerations

Some of the physical elements of the rotor-gyroscope-body system or the

forces on, or motions of them, were simplified for the sake of clarifying the

behavior of the complete system. The chosen simplifications did not greatly

distort the completed result and the reasons for this are discussed in this

section.

Those aspects of the system elements simplified included: rotor aero-

dynamics, blade section aerodynamics, radial flow effects at blade tips, in-

plane components of aerodynamic lift forces, in-plane motion of a single blade,

blade flap to in-plane inertia coupling,and the high-speed gyroscope physical

representation. The ranges of system parameters over which the simplifications

are expected to be valid are indicated.

Some concepts useful in understanding the behavior or hingeless rotors

are also discussed. These include mean rotor aeroelastic derivatives, the

composition of the hub force two-component vibration derivatives, residual

forces and how these may be trimmed by the application of cyclic pitch.

Aerodynamic Simplifications. - Flight at advance ratio greater than

= 0.7 has not been studied very extensively, up to this time. Therefore,

the present study should be considered exploratory in nature. The simplest

concepts which yield approximately correct answers have been used.

In this study of the basic behavior of hingeless rotor systems, the math-

ematical models representing them have been shorn of all but the most essential

considerations. Some of the effects eliminated would have contributed signifi-

cantly to the magnitudes of the final answers at certain critical conditions,
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but including them would have obscured the f_indamental behavior of the system

(and more comprehensive methods are available for the purpose of producing

accurate quantitative results).

Someof the simplifications are as follows:

Linear aerodynamics: 7he present tests have been limited to conditions

which do not seriously violate aerodynamic linearily. Allowing the use of

linear aerodynamic theory opens the door to straLghtforward techniques for
estimating such things as radial lift induction effects, effects of dowmwash

from previous blade passages and unsteady aerodynamics. Only one of these
effects has been investigateJ in this study. The main consequence_however,

of aerodynamic linearity is that superposition of ti_e effects of angle changes,

for example: control angle, angle of attack and precone maybe calculated

. independently of each other and su_mmedup to yie]:l the correct answer.

Aerodynamics is ex_ecte] to be linea_' as ] _r. %s _ne combined sec_i,:::_n

angle-of-attack remains ]es_: than, say, I0 degrees. ])uring the conversion

phase of flight of a stowable rotor aircraft and high-speed flight of slowed

rotor compoundhelicopters_ the nominal rotor lift is small so that blade

angles-of-attack are well below stall limits in areas of significant dynamic

pressure. In addition, over most of the conversion, tip speeds are well below

the speed of sound.

In the formulation of" the equations of motion the inertia and structural

forces are also kept within the linear range_,excel1 f<n" in-plane forcin/

functions, so that the theor'y of" systems of linear o-,_< -,_nary differential

equations, with harmonic coefficients, can be emL]s),_e<l.

Rotor-induced inflow: At high _dvance ratio_ if induced inflow is

assumed uniform over the disk, its value is very small. Even though uniform

inflow is generally considered a poor approximation._ it is expected that at

very high advance ratio even the nonuniform induced inflow effects are neg-

ligible; therefore, it has been completely ignore<] in this report.

Advance ratio effects: With any forward spee<_ at all there is a region

just to the left of the rotor mast where the net flow proceeds past the air-

foil sections from the tr'{iling edge to the leading edge. It is small at
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low advance ratio and approaches 50_0of the disk as the advance ratio

approaches infinity. Effects of reverse velocity have been explicitly ac-
counted for. The blade trailing edge has becomethe new "leading edge" and

section aerodynamic centers have been assumedshifted to the three quarter

chord locus and local lift curve slope has been reduced.

Another ramification of advance ratio is that it controls the geometry

of the vortex patterns shed by the individual blades. At low advance ratio
the vortex structure and attendant downwashfrom manyblade passages accumu-

lates over the rotor disk and drifts slowly downstreamcausing large in-

duced downwashover the disk concentrating toward its aft edge. However, at

high advance ratio, the tip vortices stream almost straight downstreamfrom

the blade tips so that downwashcannot accumulate. This is why induced down-

wash at high advance ratio has been assumedto be negligible.

At azimuths remote from 90 and 270 degrees at high advance ratio, the
flow approaches the blade obliquely. In the disk aft semicircle the flow

meets the blade flowing obliquely outboard. In the disk forward semicircle,
it meets the blade flowing obliquely inboard. Wind tunnel tests have shown

that resolving the flow into componentsparallel to the blade and normal to

it, ignoring the radial component, and treating the blade section immersedin

the normal componentas two-dimensional flo_ yields a close approximation to
the measuredpressure distribution and lift at the section (Reference 12).

This principle has been used extensively for reducing the drag of wings of

airplanes flying at transonic Machnumbers. In addition, recent tests have

shownthat the primary effect of spanwise flow is to increase the maximum

lift before stall on the section and not to change the lift curve slope or
linearity (Reference 13).

At high advance ratio, radial flow acting on the tips of slender blades

at a local angle-of-attack, creates somelift. If the rotor angle-of-attack

were zero, the blades in the forward semi-disk would still present a local

angle-of-attack due to precone. A simplified analysis showedthat even at an

advance ratio as high as _ = 2.0 the effects on aeroelastic derivatives of

blade tip lift were dwarfed by blade loads induced by flow normal to the

leading edge. Blade tip slender-body lift due to radial flow was therefore

not included in these analyses.
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Unsteady aerodynamics: The primary effect of unsteady aerodynamics can

be seen by examining the growth of lift on a blade section after a sudden

change in angle-of-attack. Lift growth is given by T_agner in terms of numbers

of chords travelled (Refe_en_e lh). Lift starts at 50_ of maximum and grows to

90_0 within 6 chords travelled. In a rotor with blades of small chord the lift

becomes 90_ of steady state in a small fraction of the rotor tip perimeter re-

sulting in effectively steady-state conditions bei_ reached within less than

iO_ of total azimuthal travel if the forward speed were zero. At high advance

ratio the tip velocity at _ = 90° is greater than _R so the lift would grow

to steady state in somewhat smaller azimuthal displacement. In the reverse

flow region, the opposite would be true and a much !o_er azimuthal travel

would be required to attain a near steady-state condition. Unsteady effects

would cause some deviation fr_om the results expected with steady aerodynamics,

especially in the reverse flow region but there the low dynamic pressure makes

the lift sensitivity small so the effect would be lost in the total aerodynamic

derivative. The net effect of" unsteady aerodynamics is not expected to reduce

the effective blade section lift-curve slope by more than a few percent. For

this reason unsteady aer:_lyr_amics is not expected _::_ d_ange the basic charac-

teristics of solutions found without it and was not included in these analyses.

Blade lift radial induction effects: - The most significant effect of

radial induction is loss of' lift near the blade tip. This effect depends on

the aspect ratio of the liftir_ surface. The blades of typical rotors have

aspect ratios greater than ten. For such high aspect ratios the tip effect is

hardly noticeable inboard of about 80_0 of the radius, and can be approximately

accounted for by assuming the blade to be smaller in radius by a factor B

(B _ 0.97 in these analyses) than it is.

A second effect is a small reduction in lift over the whole blade. This

may be accounted for by reducing the local lift curve slope slightly. A re-

duction factor of .95 was found to be appropriate for the 33-ft rotor. The

lift at a section with the above corrections depends only on the local dynamic

pressure normal to the leading edge and the normal angle-of-attack at the sec-

tion. This is also known as strip theory.

54



cd

In-plane component of blade lift: In the formulation of the in-plane

equations of motion of the blades-hub mass system, it is assumed that all mass

motions are in the plane of the disk. In actual fact the principal axis of

the blade in-plane motions of the three-quarter radius section, for ex-

ample, are not normal to and parallel to the disk plane but are at a small

angle to the reference plane.

It is, therefore, important to calculate the component of section aero-

dynamic lift in the direction of the in-plane principal axis even though it

continuously changes direction with azimuth. So long as these in-plane equa-

tion external forces are calculated in the actual direction of the in-plane

modes they may be applied to the planar equations without introducing

significant error.

The blade section lift force is predominantly in the vertical direction

so that the in-plane component magnitude is controlled by the sine of the

small angle between the in-pl_ne principal axis and the relative wind vecotr

component normal to the blade leading edge. This assumes that the blade sec-

tion resultant force is perpendicular to the wind velocity vecotr and may be

justified by examining a section of a blade with local angle of attack applied

to it. The lift and drag are available from section theory and experiment

(Reference 12).
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The drag is very small and parallel to the wind vector_ it is at cI = 1.0,

for example, 2_ of the lift or cd = .02. This causes about a 1.0 ° change in

the resultant vector from the position of the lift vector alone. If the cd
o
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or drag at zero lift is considered separately, then the resultant is less

than 1/2 degree from the section lift vector, which is ,uniquely defined to be

perpendicular to the wind vector. In forcing the blades in the in-plane

principal axis direction the effective plane of the in-plane motion may vary

by angles of the order of i0 ° or more from the wind direction. The error

caused by eliminating the section drag due to lift, therefore, will be vir-

tually negligible in determining the in-plane aerodynamic external forces.

In-plane motion of a single blade. In an actual cantilever blade with

no root motion, the flap and in-plane motions are coupled. The blade still

possesses modes that are primarily flap motion or _n-plane motion but each has

some component of the other.

At some feathering pitch, near zero, the two first cantilever modes,

characterized by motions at the three-quarter radius, for example, will be

uncoupled: pure flap and pure in-plane. The inclination of the principal

axis will be zero.

At zero rpm, if the hub inboard of the feathering hinge is very stiff

so that most of the blade flexibility is outboard, then the structural prin-

cipal axis and the flap-in-plane mode vibration principal axes follow the

feathering pitch rotation. This is the case for i,_-e33-ft rotor. If the hub

inboard of the feathering hinge is flexible and the blade outboard very stiff

then the principal axis does not rotate _s the bl_.te feathers. Most rotors

in service approach this co:_iition.

At high rpm centrifug,_i forces come into play. They produce a large

effective stiffness res_st_ng displacements norm_.] to t._-edisk plane and a

small effective stiffness _< ::[sting displacements l the plane of the disk,

the latter proportiona) to _ffective in-pEane pivot offset. The principal.

axis of the centrifug:<i! stiffnesses _me not affectei by bE a<]e festhering

pitch. For example, the flap in-plane principal _xes for an articulated

rotor are always parallel and perpendicular to the iisk plane and independent

of blade feathering pitch.

Centrifugal stiffening _cting in conjunction with flap and in-plane

structural stiffnesses generates a new principal m.:is which rotates in pro-

portion to feathering pitch wfith a factor of proportionzlly either greater or

less than unity. In these _nalyses the factor is denoted by the symbol K.

56



Flap-in-plane inertia couplin6. - The in-plane blade-hub mass equations

of motion were written as though all mass motions took place in the disk plane

normal to the shaft. The vertical motions equation were written as though all

masses moved only in the vertical direction. Under these conditions no cou-

pling between vertical motions and in-plane motions would exist.

If a rotor possessed no precone or twist and its collective pitch and

angle-of-attack were zero it would satisfy these conditions for small cyclic

pitch applications.

The 7.5-foot rotor, studied experimentally, essentially met these require-

ments even though it was operated at significant values of collective pitch

and an_le-of-a_tack. Even though the blades of the 33 foot rotor were twisted

and preconed it is felt to have approximately met the requirements because it

was tested only at zero angle of attack and a collective pitch, at the three-

quarter radius, of 0.75R = 1.5 ° . Also, the blades of both rotors were stiffer

than those in use in most flying hingeless rotor helicopters.

The vertical motions equations were forced by large, easily calculated,

linearly independent aerodynamic and centrifugal external forces. The re-

sulting response was stable and well behaved.

The forcing functions for the in-plane equations, however, were nonlinear

functions of the vertical equations external forces and response motions and

were small in magnitude. The in-plane response was lightly damped and, near

resonance, of large magnitude.

High-speed gyroscope. - The high-speed gyroscope, in these analyses, was

mounted so that it always remained parallel to the swashplate. Slop and

elastic distortion in the linkages attaching its housing to the blade feath-

ering horns was assumed to be zero.

The gyroscope itself was assumed to have no vertical depth; all its mass

was assumed to be concentrated into a flat disk. With its diametral iner-

tia, or moment of inertia about an axis lying in the disk, denoted by IG,

its unforced equations of motion in stationary axis were:
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where _G is the gyro rotation rate in radians per second

Mean aeroelastic derivatives. - If the shaft of a hingeless rotor were

fixed so that its response motions were zero and it was then given prescribed

steady rigid body displacements and velocities so that steady ae_odyna_

states existed at the rotor_ then the rotor would attain steady osr_llating

deformed shapes under the action of the motion-induced airloads ar gyroscopic

forces. It would also develop steady mean and oscillating forces at the hub.

The mean aeroelastic derivatives are the rates of change of each mean

hub force component with respect to each change in shaft displacement and

velocity. Derivatives may also be found if the change in each mean force

component due to unit changes in each control system displacement and basic

geometric shape such as twist and precone is given.

Mean aeroelastic derivatives are often used in conjunction with the six

degree of freedom rigid body equations of motion for helicopter overall sta-

bility analyses in much the same way as wing aeroelastic derivatives are used

in fixed wing aircraft stability analyses.

The mean and oscillatory aeroelastic derivatives may be calculated using

the rotor alone vertical motions equations_ which in this study possess num-

bers of degrees of freedom equal to the number of" blades. The aerodynamic

coefficients of the differential equations or the ratio of change of gr-_r-

alized force per unit displacement or velocity of each degree of f_eedo<i _':st

first be calculated. The coefficients are divided into two classe_: -es)n:se

coefficients and forcing coefficients. Response coefficients repre_:ent the

aerodynamic forces produced by motions of the degrees of freedom. F<_r_ nZ

coefficients represent those aerodynamic forces produced external 9o + _< _y-

namic system by gust angle-of-attack, rotor preconing_ and b±ade twist and by

swashplate collective, which is not a degree of freedom in this analysis.
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TWIST SHAPE PARAMETER

ROOT. (AT CL ROTATION)

_x, _DISK

\TIP PLANE

+ twist is nose up and it is measured

from zero at the root (_ rotation). It

should be noted that et is a rate of

change of twist angle per unit span;

therefore etip = etR"

COLLECTIVE DISPLACEMENT

Not a degree of

freedom but col-

lective forces are

used in forcing

derivatives.

The main difference between aerodynamic derivatives of fixed wing and

rotary wing aircraft is that the rotary wing derivatives or coefficients pos-

sess, as well as a mean value, parts which vary periodically with time (or

azimuth). In the case of the forcing derivatives, these merely add steady

oscillatory components to steady-state conditions. But the periodic parts of

the response coefficients alter the basic mathematics of the differential

equations.

The coefficients, analogous to the rigid wing derivatives of fixed wing

aircraft, relate the rotor forces, moments, and generalized forces to the

displacements and velocities in the various rotor degrees of freedom. The

coefficients are employed in equations relative to an earth-fixed axis system,

but are serially derived in this report from blade forces due to blade motions

through full rotor coefficients in rotating axes to the final fixed axes values.

Coefficients may be found for rotors with three to five blades.
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An examination of the stationary axis coefficients showed them to consist

of mean values, independent of rotor azimuth, and _LaN_mic components at fre-

frequencies of integer multiples of the nt_nber of bl_des times the rotor

rotational rate. The lowest frequency multiples of the three- and four-b_ade

rotors were 3P and 4P respectively, and were much larger in magnitude than

that of the higher multiples of rotor frequency. For this reason only the

amplitudes of the lowest frequency components, alor_ with the mean value,

were kept in the analyses. The phase of the harmor_ic components, remained

essentially unchanged except at values of I/_ approaching zero.

The mean aeroelastic derivatives based on rotor alone equations of mo-

tion, including aerodynamic coefficients just described, are displayed in

vector diagrams where changes in two moment or force components take place

with respect to one controllable motion. For example, the variation in hub

pitch and roll moment per unit cyclic pitch aeroe_astic derivatives, with

blade stiffness and advance ratio, is shown as a map of hub moment vector

change.

Oscillatory aeroelastic derivatives. - The oscillatory components of the

aeroelastic derivatives, relative to stationary coordinates, consist primarily

of first harmonic, b_, frequency; where b is mLmber of blades and _ the

rotor rotation frequency. (Higher harmonic forces are very small and are not

studied in this report.)

The b_ harmonic variations of hub and swashplate moment and shaft

shear execute fixed ellipsoidal patterns in a vector diagram such as that

used to display mean derivatives. The ellipse may be flat or circular or

have any aspect ratio between these limits and its major axis may be oriented

in any azimuth. For example, the shaft shear oscillatory forces produced by

a 3-blade rotor in stationary axis may be described as the following function

of azimuth, where Y and X are lateral and fore-aft forces respectively.

Y = Y3c cos 3_ + Y3s sin 3_

X = X3c cos 3@ + X3s sin 3_
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This resolution of the forces maybe transformed into rotating coordinates

to yield the two constant amplitude components, 2P and 4P, of vibration which

had combinedto form the 3P ellipse in stationary axis.

YR : A cos 29 + B sin 29 + C cos 4'_ - D sin 49

XR = B cos 29 - A sin 29 + D cos 49 + C sin 49

In rotating coordinates the force vector consists of two constant ampli-
i:;l,: parts ome advamcirk[ at two per revolution (2P) and tile other re_ress[n_

at four per _'evolut]on (4P). These two force components fully describe the

:ascilLatory forces, whether' in rotatin_ or stationary coordinates.

If the two components are kept separate and transformed back into sta-

tionary coordinates, each keeps its same advancing or regressing character but,

of course, changes back to 3P frequency.

Y : A cos 39 + B sin 39 + C cos 39 - D sin 39

X = B cos 39 - A sin 39 + D cos 39 + C sin 3@

The two vector components are shown in Figure 9.

O _ Y STATIONARY AXES

J "'\ /MEAN FORCE MINOR

' ' "_ADVANCING _ >¢" I
/ ¶

/ ', .......
J LOCUS -- _ _ REGRESSING 'l,,

Ib'  P 1
J RESULTANT / -_ _'_

VECTOR HEAD. "- 31. -..-.. _ .....j / _MAJOR AXIS

,_ _4P CONTRIBUTION TO 3P RESULTANT

Fi6ure 9. Three-Blade Rotor Shaft Shear Force Variation With Time
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The 3P two-dimensional momentor force vibration maytherefore be

completely described in terms of its advancing and regressive components

by specifying the amplitude and azimuthal heading, or the Y and X components,

of each at a particular instant of time or rotor azimuth position. In this

report the vibration componentsare described at rotor azimuth _ = O, that

is, with the number i blade pointed aft along the X-axis.

It is clear that the Y and X force components of each of the advancing

and regressing components of the 3P vibration at _ = 0 are given by the

following:

2P Contribution

Y3c - X3s

Y2p = A - 2

X3c + Y3s

X2p = B - 2

4P Contribution

Y4p = C - 2

Y3c + X3s

X3c Y3s

X4p = D - 2

The complete specification of oscillatory aeroelastic derivatives of

shaft two-dimensional forces follows the rules of shaft shear:

_ (Y2_' X2p ; Y4p' X4p)

_ (81c' @is' @o ' _1

Residual forces. - The concept of residual forces facilitates the dis-

cussion.of experimental results. In a rotor wind tunnel experiment only the

following parameters may be controlled and varied: cyclic and collective

pitch @c' @s' @o and angle-of-attack _. It is therefore only possible to

obtain experimental aeroelastic derivatives of hub forces and moments and

blade forces with respect to these parameters.
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In rotors with precone, blade twist,and camber,there are "residual forces"

with the controls neutral, i.e., with e = e = e = _ = O. Knowledgeof thec s o
residual meanand oscillatory forces coupled with the meanand oscillatory
aeroelastic derivatives allows the recreation of all test conditions and ex-

trapolation and interpolation of them. In particular, cyclic pitch required

to trim hub momentsto zero maybe foumd,and these are displayed to indicate

the center of cyclic pitch variation during the tests. In addition,cyclic

pitch to trim swashplate meomentsor any 2P or 4P vibration componentto zero

could be determined from this data_ if desired.

It should be noted that the residual forces for the 7.5-ft-diameter rotor

are zero. It should also be noted that since no systematic variation of col-

lective pitch or angle-of-attack were madein the 33-ft rotor tests, the con-

tributions of the small values existing during the tests are added to the

residual forces. Becauseof the large cyclic pitch required to trim out the
effects of twist and precone on the 33-ft rotor it was not possible to actually

test at zero cyclic pitch under all rpm-forward speed conditions without over-

loading the rotor. At these test conditions the residual forces may not be

realistic, since they were obtained by extrapolation of a best fit plane through

the experimental data, and at the high rotor forces at zero cyclic pitch non-

linear effects maybe important.
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VERTICAL MOTIONS EQUATIONS

Equations of motion are derived for a free flying rotary wing aircraft

having three body degrees of freedom, a main rotor with an arbitrary number

of blades (b),and a control gyro on the main rotor with two degrees of free-

dom. The body degrees of freedom are restricted to pitch, roll, and plunge;

the gyro degrees of freedom to pitch and roll only. Only one bending mode is

used for each individual rotor blade. Its shape is parabolic and in many

cases (in particular for a stoppable rotor vehicle) is a good approximation

of the first vertical or "flapwise" blade bending mode.

The derivation first develops the equations of motion of each single blade

in its own axis system rotating with the rotor. The equations, in four degrees

of freedom, contain matrices of inertia; centrifugal, structural, and aero-

dynamic coefficients.

Next, the independent sets of equations, one for each blade, are coupled

together and transformed into equations of motion of the total rotor, still

in rotating coordinates. Coefficients representing, swashplate springs and

dampers and rotor elastic mode structural damping are then added.

Following this, the equations in rotating coordinates are transformed into

stationary coordinates where the gyroscope, swashplate stationary axis springs,

and dampers and body terms are added to complete the homogenous linear ordinary

differential equations.

Lastly, the external forces applied to the system are calculated. These

forcing functions, occupying the RHS of the equations, are caused by control

motions or forces, precone, twist, and angle-of-attack.

Single Blade Equations of Motion

The single blade forced linear ordinary differential equations of motion

establish the condition of dynamic equilibrium between,the external generalized

forces and those produced by motions of the blade degrees of freedom. They

consist of sums of the products of coefficients and motions as follows:
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_b ] l_ixedl= _Txed i_e°mI
geom j

where

Z

r

Z

ee/_

6 I
J

and

8 1
o

ifixedl

8t

Z

g

rotor precone

rotor collective

blade twist rate

gust angle-of-at-

tack factored by

forward speed

and the square matrices represent the following

IIbl B]_ te inertia
L

},,,I
geom j

Single blade inertia matrix.

Centrifugal and structural stiffness

AeroJynamic damping

Aerodynamic stiffness

Blade aerodynamic and centrifugal

forcing

The single blade inertia matrix represents

the relationship between accelerations in the degrees of freedom and general-

ized forces on the degrees of freedom due to the accelerations.
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b .m.l

V

p.m

H

°"°/4

Note : The minus sign merely indicates

the presence of the forces on

the RHS of the equation in this

expression.

The blade generalized forces are as follows:

b.m. Blade root bending moment at the center of rotation, ft lb.

V Blade root shear at the center of rotation, lb.

p.m. Pitch moment about the blade quarter chord, ft lb.

H Blade flapping generalized force, lb.

r-1

The _bl matrix therefore is defined as follows:
L-J

bb. m. Bb. m. _b. m. _b. m.

_ " _ _c/4 b_

BV BV _V 8V

_ _F. _ cl4 _"

bH bH bI-I BH

_ _" _o/_ _'_

For blades with mass centroids of sections distributed along the

dm (r) and a local pitching
quarter chord line, mass distribution given by _-_

moment of inertia of the blade about the quarter chord of Io, the above

matrix becomes:

r
r2dm dr

dr

_ dm

llbl:_rr r_ dr

0

jr_ I r

dm _(_)2 dmf r_ r dr 0 r _rr d_

2

/ dm dr 0 fr(_) dmd--_ y_ dr
i

0 I 0

2 O fr(_)4 dm
dm f' _ dm dr 0

The matrix is symmetric.
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Sin61e blade centrifugal and structural matrix. - The single blade

centrifugal and structural matrix relates the generalized single blade forces

to displacements of the single blade degrees of freedom.

b.m.

V z

- ,cj 
H 6

Note: Minus sign indicates terms are

on RHS of equations.

IcF
bl

d

The matrix is therefore defined as follows:

J

Bb. m. _b. m. Bb. m. _b. m.

_8 _z _ec_4/ _6

BV _V 8V 8V

_p.m. _p.m. _p.m. _p.m.
8B _z Sec/4 _6

_H _H _H _H

__ _z _ec/4 _

The centrifugal part of the matrix may be formed from the inertia matrix

by factoring moments of inertia by N2 and making the second row and column

dH
zero. The structural part of the term _-_ is obtained by substituting the

_22

natural frequency squared, e6 ' for the rotational frequency squared, t_ ,

in the product with the flapping generalized mass.

_rr2dm _r (_)2r dmdr dr 0 0 _r dr

CF I =_2
.J

0 0 0 0

0 0 I 0
O

0 0
w6_2 /r \4

_-_ dr
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Single blade aerodynamic matrices. - There are three single blade

aerodynamic matrices. They relate root bending moment, shear, quarter-chord

pitching moment, and flap generalized force, to the velocities and displace-

ments of the degrees of freedom and to the fixed geometric shape parameters

of the blade.

The two response aerodynamic matrices are:

(, and (,

and the forcing aerodynamic derivatives in matrix form are:

_FbI_ixed (_

[ geom

The two response matrices are similar in form to the centrifugal and

inertia matrices except terms in each are functions of azimuth. For example,

the aerodynamic damping matrix is as follows:

(,) =

. •

3b.m_____m.(,) _b.m.(,) _b.m.(9) ab.m.(,)

_p m (_) ?_(_) ! (_) (_)

_H $H_H (_) _H (_) __ (_) __ (_)
_B _£ _ec/4 _

The forcing matrix, on the other hand, is not square. It has four rows,

one for each generalized force, and columns equalling the number of rotor and

blade fixed geometry descriptive elements. The fixed shapes considered in

this analysis have been: rotor precone 8o, rotor collective pitch @o'

blade twist rate @t' and gust vertical velocity z .g
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In addition to aerodynamic forcing functions, the forcing matrix contains

terms due to centrifugal force acting on rotor blade linear flapping due to

precone and collective pitch.

The combined aerodynamic and centrifugal forcing matrix is as follows:
m

_b.m. _b.m. _b.m.(, _b m. i sin A 0 0

3V _V _V _V 0 0 0 0

Fixed(@ l_P'm" (@) Be (*) _et ?_
 p.m. 0 cos A 0 0

geom I_8o o g

I
_H (@) %H SH SH___(_) 0 0 0 0

The elements of the aerodynamic matrices are evaluated at closely spaced

intervals of azimuth. They represent values of root b.m., shear, quarter-

chord pitch moment, and flap generalized force due to each of the displacements

and velocities of the degrees of freedom and also the fixed geometric shapes,

and are found by integrating aerodynamic forces radially. These aerodynamic

coefficients are functions of advance ratio _ and tip speed dynamic pressure,

: (rm) 2,
2 qtip P as well as, of course, the rotor blade detailed geometry.

Aerodynamic strip theory is used. That is, the flow relative to the

blade is resolved into components parallel to the blade quarter-chord line

and normal to it, section dynamic pressure is based on the normal component

= _ V 2 is measured betweenqn n ' and the angle-of-attack of the section _n

the normal component and the blade chord line. The effects of the radial flow

cbmponent parallel to the blade are ignored. The section lift is given as

d_ = c_ • _n qn cdr

where c_ = section lift curve slope

c = section chord, ft

dr = increment in radius, ft
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Induced inflow and unsteady aerodynamics have been neglected and tip

losses accounted for by the tip loss factor B.

The distributions of lift due to blade motions and geometric shapes are

integrated radially so as to yield the four generalized blade forces b.m., V,

p.m., and H at closely spaced intervals of azimuth. This gives the elements

of the three matrices as functions of azimuth.

The effects of the reverse velocity region were explicitly accounted for.

The aerodynamic center of the blade was assumed to shift to the three-quarter

chord point.

In the three matrices there are only three types of section angle-of-at-

tack; they are due to: section pitch, radial slopeand section velocity:

section pitch

 c/4

e
o

e t

radial slope

6

6

Bo

section velocity

z

The increments of lift in the radial direction for each type of angle-of-

attack are as follows:

Section pitch: an : ec/4 + eo + _t r

d_ = c . _n _ (f_r + V sin @)2 cdr

This expression applies in the advancing flow region. In the reverse

velocity region the sign of the lift increment reverses.
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- (slope) v cos
an = (_r + V sin ¢)

d_ = c_ (-slope) V cos ¢ _ (fir + V sin @) cdr

[his expression applies in advancing flow. The sign changes in the

r_,re_a _.velocity region.

Section velocity:
velocity : r_ + (R)2 6 + z

_ velocity

_n (_r + V sin @)

d_ = c_ (-velocity) _ (_r + V sin @) cdr

And again the sign changes in the reverse velocity region.

The radial distribution of the lift increment d_ at each azimuth posi-

tion is then factored by the mode shapes of the four modes to yield the aero-

dynamic derivatives. The four mode shapes are (I) linear flapping, (2) ver-

tical displacement, (3) pitch moment arm about the quarter-chord line, and

(4) parabolic flapping.

_r d_b.m. = r_rr dr

V f d_= _ dr
r

c d_p.m. = (c - _) d_r dr (reverse velocity region

r

H = _r dr

The above integrations at each of a large number of azimuthal positions

become the aerodynamic derivatives for the single blade.
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Rotor Equations of Motion

The single blade equations would permit the calculation of the independent

motions of each blade unrestrained at its root by the shaft or by attachment

to the other blades through the gyroscope. In this section, the restraints,

offered by the shaft to vertical and tilting motions and by the other blades
(through the swashplate) to feathering motions, are applied to the three in-

dependent blade equations causing them to be transformed into the equations
of motion of the complete rotor in rotating coordinates.

Following the transformation to rotor degrees of freedom in rotating

axes, the swashplate rotating damping and rotor flapping structural damping
terms are added. The rotor equations are then in a form to be transformed

to stationary axes.

Oncein stationary coordinates, stationary damping, springs, and gyro-

scope terms are added to the swashplate and the body equations of motion,

complete with pitch, plunge, and roll inertia and aerodynamic terms, are added

to the rotor equations of motion.

Transformation of blade external forcing functions due to precone, twist,

collective, and angle of attack through rotor rotating coordinates and adding

swashplate control momentsor displacements and body residual forces and mo-
ments complete the rotor airframe equations of motion.

Rotor equations of motion in rotating axes. - The pth single blade motions

are represented by the vector:

_p

z
Pl

_z =
p e

6
r

rotor, for example, there wou_ld be a correspondingFor a three-blade

vector for all blades
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_Z

1]z3

and it would contain 12 components, or degrees of freedom•

It =_ possible to write the equation of all three independent blade

motions together as follows:

B

Ib

Ib

Ib

m

_Fb

_I]I

°°

Qo

+

CF b

CFb

I]

zI

L

']z_

i  z2[-

_b

fixed

geom

= _b

fixed

geom

_b

fixed

geom
B

D

_Fb

_Fb

_TI2

;_b

_I]3

1]z2

1]z3

fixedgeom ]

2

3

It has been shown in the section on kinematics that blade displacements

are related to rotor displacements in rotating coordinates by:

Therefore _,he vector of all blade displacements is related to the rotor mo-

tions by:
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z zl

_l 1]z2 _ = Dz 2 _Z or Jim = [mz] _z

and since the relationship between blade motions and rotor motions is purely

kinematic, then:

= _I$]

r]

On the other hand, the transpose of the p_ matrix relates the generaliz-
L_

ed forces applied to the rotor degrees of freedom to the generalized forces

on the individual blades.

M
r

L
r

T
r

M6
r

_r

H 6
o
r

H6 e

r

H6_r

rb .m.l _

V I

P .m. I

H I

b .m. 2

V 2

P .m. 2

H 2

b.m._

v3

P.m. 3

H3
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Generalized Rotor Forces in Rotating Axes

where M = Rotor pitch moment ft Ib
r

L = Rotor roll moment ft Ib
r

T = Rotor thrust ib
r

M 8 = Swashplate pitch moment ft ib
r

M@ = Swashplate roll moment ft ib
i"

}It = Rotor collective flapping generalized force ib

oF

H 6 = Rotor pitch flapping generalized force ib
8r

H6@ = Rotor roll flapping generalized force lb.
r

D] matrix the three rotorThe two properties of the z permit uncoupled

blade equations of motion to be transformed into equations of motion of the

overall rotor degrees of freedom in rotating coordinates.
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Ib

Ib

b_]l

Ib

a_l2

¥

°°

-< 6 _+
o

,°

6 e

°.

_b(,,.

_T13

el

1z
e

6
Ol

6e I

6¢

C_-'b

c%

?_Fb

CFb

[%] "'e

z

¢

6 e

,6¢j

L _J

_b

_b

_-_3(*)

z _ f.g. I [geom.]

BFb

= _ f.g. 2

BFb

_f'g. 3

Rotor equations in rotating coordinates may be written more concisely

as follows:

--lAW.(_)]

_z

Bo

@o

et

Z

z

@

¢
6
o

6e

6_
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The [AF (@)] matrix contains aerodynamic forcing functions, primarily,

but it also includes centrifugal collective generalized forces due to precone,

_o' and collective pitch, @o.

Rotating damping, CR, due to feathering friction, and rotor flapping

structural damping, _6' may be conveniently added at this point. They form

a mechanical damping matrix relating rotor degree of freedom generalized

forces to velocities of the degrees of freedom

Igeneralized f°rces} = IDa] Bz

Da] a diagonal matrix is defined as follows:

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 CR 0 0 0 0 0

0 0 0 0 CR 0 0 0 0

0 0 0 0 0 2 _6 w6 M6 6 0 0
o o

0 0 0 0 0 0 0 2 _6 w6 M6 e 6@ 0

o o o o o o o o 2 _ _6 M6_ 6_r
m

The final equations of the rotor relative to rotating coordinates are

as follows :

whe re

6o
@
o

@t

z
g
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Transformation to stationary axes. - The transformation matrix relating

the rotor rotating degrees of freedom, _z _ to the rotor stationary axes de-

grees of freedom, BZ _ and discussed earlier, is ITzl.

The transpose of the transformation matrix supplies the relationship

between the generalized forces on the degrees of freedom in stationary coor-

dinates to the generalized forces on the rotating axes degrees of freedom.

{Generalized Forcesz} = [Tz] T IGeneralized Foreesz}

The transformation and its derivatives and transpose supply the means of

transforming the equations of rotor motions from rotating to stationary axes.

The derivatives of the relationships between rotating and stationary

degrees of freedom are as follows:

[q ,z
The equations of motion in rotating axes may then be transformed to sta-

tionary axes in the same fashion as equations of blade motion were transformed

into equations of rotor motion. The full transformation process is written

out and then the abbreviations permitted by rotational symmetry are shown:

The derivatives of the transformation matrix consist of derivatives of

the elements of the matrix. For example, rT] is as follows:
L_
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- sin _ t

cos _ t

0

0

0

©

0

and similarly for IT 7.1 •

- cos_t 0 0

- sin _ t 0 0

0 0 0

0 0 - sin _ t

0 0 cos _ t

0 0 0

0 0 0

0 0 0

m

0 0 0 0

0 0 0 0

0 0 0 0

- cos _ t 0 0 0

- sin _ t 0 0 0

0 0 0 0

0 O-sin _ t - cos _ t

0 0 cos _ t sin _ t

The inertia, centrifugal and damping aspects of the rotor are all rota-

tionally symmetric and are independent of rotor azimuth position _ or _t.

For this reason transformation of the matrices describing them to stationary

axes can be simplified by employing the values of the transformation, its

derivatives and its transpose at @ = O. The same result would be obtained

if transformation matrices at any other values of azimuth had been employed.

The transformation matrices at = 0 are as follows:

m
D

i 0 0 0 0 0 0 0

0 i 0 0 0 0 0 0

0 0 i 0 0 0 0 0

0 0 0 i 0 0 0 0

0 0 0 0 i 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 -1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 -i 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 -1

0 0 0 0 0 0 1 0

: =

[Tz(o)]:

8o



[Tz (_)] = - n2

i 0 0 O 0 0 0 O

0 i 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 i O 0 0 0

O 0 0 0 i O 0 O

0 0 0 0 0 0 0 0

O 0 0 O O 0 i O

0 0 0 0 0 0 0 I
w

The ITz (0_, [Tz (0_ and [Tz (0_ are employed in transforming the

inertia, centrifugal and structural, and damping matrices to stationary co-

ordinates.r, uThe transf°rmati°n and derivatives varying with azimuth [Tz (_

and ITz (4)I, however, must be employed in transforming the aerodynamic matrices
L_

to stationary coordinates since they vary with azimuth.

°

Including the simplifications, the rotor equations in stationary axes

become :

[I] _Z + [2 [I] [Tz] + [Da]] _Z + [[I] [Tz] + IDa] [Tz] + [S]] _Z

To the equations of motion of the rotor in stationary coordinates must

be added terms for swashplate springs and dampers to ground. The swashplate

rotationally symmetric spring and damper terms are as follows:

+ = 0

The final rotor equations in stationary axes including the above terms

are as follows:

• + Bz- :

and the matrices contain terms of the following kind:
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[c]
[s]

[B]

Inertia

Mechanical damping and gyroscopic

Mechanical stiffness

Aerodynamic damping, function of azimuth

Aerodynamic stiffness, function of azimuth

Forcing functions

Complete Vertical Equations of Motion

The rotor equations and forcing functions have been derived in stationary

coordinates in the previous section. The gyroscopic terms are shown on page

58. In this section the body inertia and aerodynamic coefficients are derived

and combined with the rotor and gyroscopic equations to form the left-hand side

of the equations or the homogenous differential equations.

It should be noted that the term "body" refers to the complete non-

rotating configuration to which the rotor is attached. It includes the body,

nacelle, wing,and tail.

The rotor forcing functions, the body forces and moments existing at zero

angle-of-attack and sw_shplate control moments are combined to form the right-

hand side of the complete equations or the forcing functions.

Bod 7 Terms. - The body terms consist of inertia forces due to acceleration

of the three body degrees of freedom pitch, roll, and plunge, and aerodynamic

terms due to acceleration, velocit_ and displacement of the degrees of free-

dom. In addition, there are body steady forcing terms due to c.g. offset,

aerodynamic forces at zero shaft angle-of-attack, due to gust angle-of-attack

and jet engine thrust.

Inertia. - The equations of motion of the rotor were derived with the

coordinate axes a_sumed to pass through the center of gravity. With the c.g.

on the shaft centerline, Z forces (lift) produced no pitch or roll moments

about th@ c.g.

It is now required to modify the equations to accept changes in c.g. posi-

tion both fore and aft, and laterally. (The XH-51A(C) has a fairly wide lat-

eral c.g. range due to vehicle asymmetry.)
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In aircraft work it is standard practice to consider the coordinate axes

to pass through the c.g. and the aerodynamic terms are altered to suit changing

c.g. positions. In the case of the helicopter, it appears to be simpler to
leave the axes unchangedand modify the inertia matrix to suit the changing

c.g. position.

The following figure illustrates the changes:

Z

ORIGINAL POSITION AY
OF c.g.

I

I AIRCRAF1]
Y _,AXES /

X

X

About the c.g. axes (X

m

Iy,y,

IX, X ,

M

I

°

W

, Y ) the inertia forces are as follows:

_X TX t _"

z'

Moments about the aircraft axes (X, Y) are related to moments about the

c.g. axes as follows:
m

i .0 0 -AX

0 1.0 +a_Y

0 0 1.0

MX,X, I

z' j

(i)
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By the transpose rule the c.g. axis motions must be related to the

aircraft axes motions by

1.0 0

Substituting for I!.;1 in equation (i) and then transforming the

mome nt s $",

to aircraft axes by equation (2) yields

m

"Myy_ 1.0

= 0

Z 9 0

and this yields

r

Z

m

0 -_X

1.0 _ff

0 1.0
I

IX, X ,

M

1.0 0 0

0 1.0 0

- AX AY 1.0

+ MAX 2 -MAXAY -MAX
Iy,y,

+ MA_ MAY
-MAXAY IX,X,

-M AX M AY M

i
Thus, with pitch and roll moments of inertia about the c.g. axes called

and the mass of the body (but not blades) called M and
Iy,y, and _'X'

with the displacements of the c.g. relative to the shaft-centered aircraft

axes called Ax and Ay, the inertia terms of the aircraft body are as shown

above.

Aerodynamic. - The aerodynamic terms in the airframe equations of motion

are as follows for the unforced system:
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0 0

0 0

0 0

i

°I
0

[¢" + o

k" o
O i-Lp VO _

o _!zJ
V

- M 0
+ 0 0

Z 0
Q,

Some small aerodynamic coupling terms may also exist but they have been

ignored.

Before these equations can be added to the complete rotor equations

(those which include the forcing terms on the RHS), the forcing and balancing

wing-body-tail-nacelle terms must be added to the RHS of the above equations.

It should be noted that the signs of the aerodynamic terms are such

as to convert them from aircraft axes to helicopter axes. Therefore, the

aerodynamic terms have been derived according to aircraft sign conventions.

Z

7 x

Y ®

Y

×

AIRCRAFT AXES HELICOPTER AXES

Both are right-hand systems.

The RHS terms consist of gravitational attractive forces, gust angle-of-

attack forces, aerodynamic pitch, roll, and lift forces at _rotor : O, the

change in body forces due to jet engine thrust, and a force correction term

due to rotor downwash and to correct balance error.
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Ax nW + M • _ + M + dM . FN +AM (q.,error)
= c.g. _ gust _ = 0 dFN o

dL

:_AYc.g.nW - L_. _gust - L =0 - --'dFN FN -AL ° (q,,error)

nW- Z "_
gust

dZ
---' FN -AZ ° (q*, error)

Z= 0 dF N

= {Fbody} *Refers to downwash correction

The body aerodynamic derivatives and zero shaft angle forces and moments

are found by conventional aircraft methods for configurations with large

bodies, wings, and tails.

Gyroscope terms•

the earth, consist of tilt relative to the airframe

Absolute gyroscope motions, or motions relative to

8, _ combined with tilt

of the airframe e, _.

io}iabsolute gyroscope tilt = +

Absolute gyroscope tilt can be written in a more convenient form,

+ =

¢ 1 o

8

.¢•

When accelerated or given a tilting velocity, the gyroscope generates

body and swashplate moments as follows:

e.

8

8

)- +

0 -2 _I G 0 -2 _I G

2 _I G 0 2 nl G 0

0 -2 _I G 0 -2 _I G

2 _I G 0 2 _I G 0

m

IG 0 IG 0

0 IG 0 IG

IG 0 IG 0

0 IG 0 IG

o

e

8

¢

_= _

rM

i

iMol

_ J

86



The left-hand side terms are added to the rotor body differential

equations to account for the effects of the gyroscope.

Complete vertical equations. - The complete equations of vertical mass

element motion with forcing functions consist of rotor equations, body equa-

tions,and gyroscopic equations. The complete set is as follows:

= IF (_/)] If} + tFbody} + Icm}

Swashplate control moments Ic.m.J have been added. They are applied in a

vector with all elements zero but the M e and My swashplate moments. Ex-

ternal control moments may be applied to the free swashplate through them for

"closed loop" operation.

The equations represent the free flight of a feathering feedback gyro-

scope-stabilized hingeless rotor compound helicopter.
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IN-PLANE MOTIONS EQUATIONS

Equations of motion of the rotor blade - hub mass system in the plane of

the disk or the plane normal to the shaft are derived. The system is free in

the disk plane, or constrained by springs to ground. The hub mass may translate

longitudinally and laterally and it may rotate relative to the rotating axes.

Each blade is assumed attached to the hub at a pivot point located at a fraction

of the tip radius from the shaft. The distance depends on the blade elastic

dynamic in-plane mode shape. The blade in-plane motion about the pivot is as-

sumed to be rigid.

The number of degrees of freedom in the system is three for the body freedoms

and one for each blade; i.e., 6 for the three-blade rotor and 7 for one with

four blades. The rotor elastic degrees of freedom are collective(or all blades

together to give a shaft torque) lateral, longitudinal, and the reactionless or

differential collective or scissors mode.

The derivation first develops the equations of motion of a single blade in

its axis system rotating with the rotor. The equations, in four degrees of

freedom, contain matrices of the following coefficients: inertia or acceleration

terms, coriolis or velocity terms, centrifugal and structural or displacement

terms, and aerodynamic velocity and displacement terms. The response aerodynamic

terms are assumed to depend on the blade section drag coefficient at zero lift

and are very weak. The periodic parts may be ignored without significantly af-

fecting the blade response. This assumption reduces the equations of blade

motion to linear ordinary differential equations with constant coefficients.

The individual blade degrees of freedom are then constrained to take up

only those motions permitted by the overall rotor degrees of freedom. The re-

lationship has been discussed in the section on kinematics. The transpose of

the kinematic relationship matrix is then allowed to act on the individual blade

generalized forces so as to gather them into generalized forces on the overall

rotor degrees of freedom. In this way the three or four sets of individual blade

equations of motion are transformed into a single set of equations of motion of

the whole rotor in rotating axes. Terms are then added to account for the mass

and moment of inertia of the hub and blade structural damping.
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Following this, the equations are transformed into stationary coordinates

where non-rotating body mass and springs to ground (if tunnel mounted) are added

to complete the homogeneous or left-hand side of the differential equations.

The in-plane equations forcing functions or forces external to the homogeneous

set are next derived. The major portion of these forces is produced by forces on,

and motions of the degrees of freedom of the vertical motion equations. The re-

maining small portion comes from the azimuthal variation of blade section drag.

The major forcing functions are divided into two parts: vertical motions

induced and vertical aerodynamics induced types.

The in-plane forces caused by blade vertical motions come about because in

actual fact blade element masses also move slightly in the radial direction as

they take up vertical deflections. These small radial displacements and veloc-

ities cause in-plane centrifugal and coriolis forces which are considered to

be external to the in-plane equations.

Essentially vertical section air forces actually have small components in

the plane of the disk and in the direction of the principal axis of blade lead-

lag motions. These components are carefully calculated to produce the other

major portion of the in-plane forcing function.

of mass elements.

pth blade is:

Single Blade Equations of Motion

The single blade freedoms are discussed in the section on in-plane motions

The vector of dispacement of the degrees of freedom of the

qXyp : Vp

I:;I
The homogenous differential equations of the in-plane motions of a single

blade are as follows:
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II_i_p+Ic0RpI_ l_pl

-IApL
where the square matrices represent the following:

_Xyp

IIpl

Ic°RpI

_cFpI

IApl

Blade inertia

Coriolis coefficients

Centrifugal and structural stiffness

Blade aerodynamic damping

Blade aerodynamic stiffness

Forcing functions are treated in a later section.

Blade inertia matrix. The blade inertia matrix represents the relation-

ship between accelerations in the degrees of freedom and generalized forces

on the degrees of freedom due to the acceleration.

n.f.pa.f.p

l =-
s.t.p

p.t .p

_p

Vp

_pj

Note: Minus shows terms

on R.H.S.

The blade generalized forces are:

n.f, Normal force acting on blade, or pivot shear_ ib

a.f, Axial force acting on blade, or pivot tension, ib

Sot, Shaft torque, or root in-plane bending moment, ft ib

p°to Pivot torque, or in-plane moment at pivot, ft ib
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The _pl matrix represents the rate of change of generalized force per[! Sn.f.
unit acceleration. For example the (I,i) element is _ . The complete
matrix is as follows:

Mb rc.g.

% (rc.g.
e)

o %r % (rog e)c.g.

o 0

0 Ib _ - e Mb r e
shaft "g

0 __lhshaft e%r Ibc.g. pivot

The Ipl matrix is symmetrical.

R dm drMb = Blade mass : d-7 Note: e = pivot offset

in feet.

: Center of gravity of blade measured R
rc "g" i [ dm

from center of rotation r -
o.g % _7 d_4

Ibshaft = Moment of inertia of the blade
about shaft centerline

Ib : Moment of inertia of the blade

pivot about the pivot

Blade coriolis matrix. - The coriolis matrix relates blade generalized

forces to velocities of the blade degrees of freedom.

ina.f.

p .t

CORpl = 2_

UpVp

1 l Note : Negative indicates

CORp Up R.H.S.

_p

"0 -N b 0

% 0 _re.g"

0 -Mb rc. g. 0

0 -% (rc.g.-e) 0

The coriolis matrix is anti-symmetric.

0

% (rc.g.
0

0

e)
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Blade centrifugal and structural matrix. - The centrifugal matrix relates

generalized forces to displacements of the degrees of freedom and includes

blade structural stiffness effects as well as rotating mass effects.

n.f.

P

a.f.p

s.t.
P

p.t.
P

CFpI :

CFp] :

--d n.f.

UpVp

dn.f.

Note:

d n.f. d n.f.

du dv du d_

da.f. d a.f. d a.f. d a.f.

du dv du d{

d s.t. d s.t. d s.t. d s.t.

du dv du d_

d p.t.

du

n21,,_

d__.t,

dv

0

dp.t. d p.t.

dv dC

Negative

indicates

R.H.S.

Matrix for

one blade

only.

_]2Mb rc'g" n2Mb(rc.g .- e)

0 0

The terms are all self-evident except perhaps d p.t. and

0 0

0 _ _2 [ibshaft

ib )] 2 01bpivot

- +Iv[ er - w.

pivot O c.g ip_ =

d n.f.

d_ d_
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Their derivations are as follows:

Forces due to _: w'/_ _

•_"____r_ 2 dm

L

_--e ---_ -- --!i _

V" r

There are two types of forces produced by _. The force normal to the

undeformed position of the blade

d_dr
_2 dm

- r _-_ sin i

and the force normal to the deformed blade needeJ to obtain pivot torque

d2 (n.f.) d : r _2 dm sin ({ - i)
d_dr d¥

Now it may be noted that _( r - e) : ir so that i = _ (i - _) and

- i = _ _. Employing these two relationships and for _ and i small
r

and

2

d n.f. _2 dm (i e
d_dr - r d_r - 5 )

d2 (n.f.) d r= _2 dm e
d_dr dr r

: n2 dm (r - e)_7

_2 dm
= - e _rr and the minus sign denotes a retarding force to

forward rotation about the pivot.

The two derivatives with respect to _ are therefore

Rd n.f. _ _2 (r - e) dmdr _ _2
d{ dr M b (r - e)c.g.
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dp. t. _2 dm
d_ - e (r - e) _rr dr

or = _2f(r-e)(r-e)dm _2f dm_r dr - r(r-e) _rr dr

: + _2 IIbpivot - I b + e _ r ]shaft c.g.

_2 b shaft pivot c.g.

dH

It should be noted that the above is not exactly analogous to the d-_

term of the vertical blade motion equations. It is, therefore, not possible

to include structural stiffness in exactly the same way. In the in-plane

formulation the pivot spring is always the same: k_ ft ib/radian. Its value,

therefore, will not change with rpm. At zero rpm or _ = 0, the in-plane fre-

quency is given by

l.p. :_ivot

2

so that k{ = w. Ib
l.p. pivot

d p.t°

d_ [ ( .)} o)_2 2 IbIb - Ib +M b e r -

shaft pivot c .g ip_ = pivot

Blade aerodynamic matrices. - For the purposes of this study all aerody-

_namic forces caused by in-plane displacements of the blade will be assumed

to be zero.

Apl = 0

The only in-plane aerodynamic force which is not related to the essen-

tially vertical aerodynamic forces is the cd or section drag at zero lift.
o

Abbot and Von Doenhoff indicate the cd of the _CA 0012 airfoil to be .006.
o

For purposes of this study, to account for roughness and to partially compen-
dcd

sate the missing _ an effective value of cd = .011 will be used. (This

figure suggested dCl by N.B. Gorenberg.) o
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It is now possible to approximate the aerodynamic forces due to blade

in-plane motions. It will be assumed that the only forces on the blades due

to blade motions will be due to cd
o

The blade aerodynamic damping motion IAR I is as shown on the following

I PJ
page.

Calculation of the elements of the blade aerodynamic damping matrix is

straight forward. The derivation of the _ term will be shown as an
a_

example.

Aerodynamic drag (or negative force) per unit radius due to unit

velocity is as follows:

°--4r .f.

Due to minimum drag coefficient cA the rate of change of normal force
o

per unit radius is:

dn.f. i
dr - Cd _ p (ar + V sin , + _(r-e) )2 c + cd

o o

_Pl (nr + Vsin_)2c

i [ + 2(_r + V sin @)= - cd _ p (_r + V sin ¢)2
O

+ 121_2 (r-e c + c d 2
o

p (Or+ V sin ¢)2 c

but _2 (r-e)2 is negligibly small compared to the other terms.

d n.f. _ cd g _ 2 _(nr + V sin ¢) (r-e) c
dr o

d2 n.f. = - cd p c (r-e) (Or + V sin ¢)
d_dr o
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and the derivative _ becomes:
d_

fcd DC (r-e) (r-e) (_r + V sin 4) dr
o

= - cd pc -2e _+ + -2e_ +e Vsin@
0

In-plane Equations of the Rotor

Once the single blade equations of motion are available, they may be

assembled into a single uncoupled matrix. First, form the vector of all

single blade displacements :

_xy :

_xYl )

_xy2 i

1]xy3

for a three-bladed rotor

The equations of motion of the three uncoupled blades become:

+

-i I

12

13
m

.°

_xy2

1]xy3

+

_OR I

cob

C0R 3

xy2

-CFI

CF2

_2_

m

AR I

AR 3

The displacement derivatives assumed to be zero were not included.

= 0

The equation may now be transformed into rotor coordinates employing the

relationship between blade and rotor coordinates derived in the kinematics

section, namely:
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or expand to three blades

m

D

xY I

_xy = DxY2 Bxy or _xy = IDxy 1

D

x:¢ 3

and since the relationship is kinematic

: J° l

_xy

and

Dx ] matrix for the purpose ofand employing the transpose of the Y

gathering up single blade generalized forces and converting them into gener-

alized forces applied to the rotor degrees of freedom. The transpose relation-

ship is as follows:

Y
r

X
r

N
r

• H_o
r

v

_v
M

r

n.f. I

a.f. I

s .t "i

p .t "i

n.f. 2

a.f. 2

s .t "2

P.t. 2

n.f. 3

a.f. 3

s .t "3

p.t '3
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where the generalized rotor forces in rotating coordinates are as follows:

Y
r

X
r

N
r

H_ °
r

H_y r

H_x
r

Lateral force, ib

Longitudinal force, ib

Yawing force, ft ib

Collective lead-lag generalized force, ib

Lateral lead-lag generalized force, ib

Longitudinal lead-lag generalized force, ib

These two properties of the IDxyl transformation matrix allow the three

uncoupled sets of single blade equations to be transformed into rotor equations

of motion as follows:

Io IT -l I
+

_F I

CF2

- I°xyIB 

CF3

i m

RI

COR 2

COR3_

_1 -

AN

AR3

-- o

With the equations written in this form it then becomes possible to in-

clude rotating hub mass terms and blade structural damping terms. The terms

for the rotating hub motions and rotor elastic mode structural damping are as

follows and may be combined directly with the rotor equations in rotating

coordinates:
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%

I R

0

0

0

ol

Yr

oo

x
r

oo

r

•°

_o
•°

42
°°

_x

B N

_]2M R 0 0 0

0 fl2M R 0 0

0 0 0 "0

0 0 0 0

0 0 0 0

0 0 0 0

0

0

+

0 0

0 0

0 0

0 0

0 0

0 0

0

0

0

0

2_4_o_o

Yr

x
r

r

{o

Cy

{x

2_M_y_y

=0

Yr i

x
r

u
r

Go

Cy

_x

The hub inertia terms and the rotor structural damping terms are defined

as follows:

%

IR

co

M{o{o , M{y_y, M_x{x

Hub mass_ slugs

Hub polar moment of inertia, slugs ft 2

Fraction of critical damping

Natural frequency of mode at rpm, radians/second

Generalized masses of rotor collective, lateral and

longitudinal lead-lag degrees of freedom.

And the combined equations may be written more concisely as:

IIxy]<y+ [c°R:yl + [ xyl [ {xy:°

In a similar way to the transformation from blade to rotor coordinates

the equations may be transformed to stationary axes by employing the trans-

formation relation between rotating and stationary axes and remembering that

it is a function of time so that:
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= [_ _xYBxy xy;

xyl XY

_xy xY'xy BXy

The transpose which relates the generalized forces in stationary axes to

those in rotating is as follows:

= [Txyl TGFGFxy xy

or

Y

X

N

H_° [

_y

H,

Y
r

X
r

N
r

__

_or

_.vr

_xr

The rotor and hub equations in stationary axes become:

B =0
_Yl XY

And with the appropriate simplifications due to rotational symmetry the

equations become, through the use of ' x_l and at _ = 0,

+

xy 8xy

-
I_O_x._li_l • [_1 '_"[_xyJ 8XY
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Body terms. - Terms for the body mass and spring restraint to the tunnel

are combined with the rotor equations.

The shaft may translate laterally "y" and longitudinally "x" or rotate

"v." No other degrees of freedom involve motions of the shaft. Masses of

shaft or body attached to it therefore can cause inertia forces only in acting

on those degrees of freedom_ the forces Y, X_ N.

In the case of the N force the shaft is presumed to be torsionally unre-

strained by the transmission and engine - as though it were fluid coupled.

The engine applies a mean torque, only, to the shaft and free torsional oscil-

lations of the shaft are allowed.

The Y and X forces _ue to accelerations _ and _ will be due to the

mass and moments of inertia of the helicopter body.

It is assumed that effective non-rotating masses exist in the plane of

the disk. One resists lateral accelerations and the other longitudinal. Their

magnitudes are different because they _re based on rolling and pitching mo-

ments of inertia of the body as well as the body mass.

Springs restraining the shaft against lateral and longitudinal motions

are also employed. The terms for body or shaft inertia and springs may be

combined with the rotor terms and are as follows:

01I O0M 0 + K x = 0
x

0 0 _" o v

With the rotor (and rotating hub) removed these equations govern the roll

and pitch or, more accurately, the lateral and longitudinal natural frequencies

of the model in the wind tunnel.

The homogeneous equation. - Including the body mass and spring terms with

the rotor terms yields the full set of homogeneous in-plane equations.
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In-Plane Forcing Functions

The in-plane forcing functions are produced by vertical motions of the

blades and through components of the vertical response and forcing aerodynamics

vector. Before discussing the aerodynamic forces causing blade in-plane motions

it should be noted that forcing aerodynamics in the in-plane direction are ap-

plied to the blades due to collective pitch, angle-of-attack, cyclic pitch,

precone, twist, and the flapping deflections and velocities accompanying them.

These in-plane components of the essentially vertical aerodynamic forces

depend on two considerations:

i. Magnitude of the essentially vertical force

2. Angle between the lift resultant vector and the effective plane of

the blade in-plane response.

Because the in-plane velocities are relatively small, of the order of

I0 ft/sec or so, they will not significantly alter the magnitude or direction

of the forcing aerodynamics.

The vertical motions equations forcing and response aerodynamics combine to

yield net local angles-of-attack relative to the flow component normal to

the blade leading edge. The local lift force at the blade element, if as-

sumed to be normal to the relative wind at that section (ignoring the drag

contribution to the aerodynamic resultant force) has a component in the di-

rection of the in-plane response of that blade -- calculated in these analyses

in the vicinity of the blade section at the 3/4 radius.

These in-plane (of the mode) aerodynamic forces along each blade may be

factored by the rotor mode shape for that blade, integrated and combined with

the similar generalized force contributions from the other blades to yield

the in-plane rotor mode generalized force. The generalized force varies with

time as the rotor turns through the azimuth and contributes to the forcing of

that in-plane mode. The same forces can also be factored by each of the other

rotor mode shapes to obtain the generalized forces in all rotor in-plane modes.

Body or shaft modes, or degrees of freedom, however, displace in a direction

normal to the shaft or vertical axis so their generalized forces must be cal-

culated relative to the disk plane rather than relative to the principal axis

of the blade-alone in-plane motion.
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Before leaving the aerodynamic in-plane forcing functions it should be

noted that there is an aerodynamic contribution that is independent of "z"

motion and forces. It is due to the drag coefficient of the section at zero

lift cd Its generalized force is considered separately.
o

In addition to the aerodynamic contribution to the in-plane forcing func-

tions due to rotor response, there are inertia or mass-induced forces due to

blade vertical flapping motions. Thesedepend only on the built-in precone

angle _ and the sumof the contributions to the flapping motion of each
O

blade from the rotor flapping degrees of freedom. The in-plane forces are

due solely to displacements_ velocities, and accelerations in the radial di-

rection of the elements of blade mass distribution. The inertia forces can

be factored by in-plane mode shapes to obtain generalized in-plane forces

which are then combined with the aerodynamic external generalized forces to

yield the net forcing function to the in-plane degrees of freedom.

In-plane forcing due to vertical motions. - The vertical motions degrees

of freedom are assumed to provide displacements parallel to the shaft only,

in framing the vertical equations of motion. In actual fact_ however, elements

of blade mass take up small motions in the radial direction when the blade

bends vertically in its parabolic mode shape, e_ecially when in the presence

of built-in blade precone angle. Figure I0 shows the small inboard (negative)

radial displacement "v" that accompanies the vertical displacement "5" in

conjunction with built-in precone B°

2
r

position of blade above plane = 8o r + 6ti p (_)

Figure 70. Blade Radial Displacement Due to Flap Bending
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The displacement, velocity, and acceleration of a lump of massat station

"r" due to flapping displacement are as follows:

v = - 6° + _ _ 6ti p 6ti p

d-_= - g 60 + g g 6tip 5tip

.. rd2v 2 4 r 6tip
dt 2 - 6o + Y R2 6tip - 3 R2 6tip

The above is the motion of station "r" due to flapping deflection, veloc-

ity, and acceleration, in rotating blade axes, and is non-linear.

The non-linearity causes no great difficulty in this analysis since the

mass element motions are used only for producing external forces to the linear

in-plane equations of motion.

With the radial displacement, velocity, and acceleration of elements of

mass of the blades known in terms of tip displacement, velocity, and acceler-

ation it is necessary to find the motions of all blade tips in terms of mo-

tions of the rotor degrees of freedom in stationary axes. Then with blade

radial motions known in terms of motion of stationary axes degrees of freedom,

it is only necessary to find the single blade generalized in-plane forces due

to single blade radial motions and collect them by means of the "ID rlT matrix

transform these to stationary axes by the ""ITIT matrix. The forceslAjIand may
L •

then be used in conjunction with th@ aerodynamic forcing functions to find

the in-plane response.

The motions of the blade tips are determined from the vertical motions

response degrees of freedom by employing the transformation from stationary

to rotating axes and from rotor coordinates to blade coordinates, as follows:

lozll zl
and _i may be ob-and since BZ is known as a function of time, then '_z z

differentiations of the above expression. From "_z' Tlz'and l]z thetained by

required blade tip displacements, velocities, and accelerations may be extracted.
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th
The p single blade generalized forces due to radial motions may be

written in matrix form as:

n.f.

a.f.

s.f°

p.fo

where

P

P

P

0 0 2n8o_ 8 n Jb 0 0

R2

n2Bolb 2 nRjb o o _olb 4 R4
- - 3_ 2 3 Jb

R RR2

0

0

2n oJb 8
0 - 0 0

R2 3 --4---R

2_Bo 8 _]K
0 --J -- eb 0 0

R2 eb 3
R

ib r2 dm Jeb r2 (r-e) dm= _ dr = _ dr

£Jb r3 dm= d_r dr

_e r4_= _- dr

f dmK b : r3 (r-e) _ dr

6
P

2
6
P

P

8g
PP

g-
P

_;+_2
PP P

th
and 6 is the tip deflection of the p

P

cr time _t.

blade, it is a function of azimuth

The generalized forces on the rotor degrees of freedom in stationary axes

are then found by

lOx j

for a 3-bladed rotor.

n.f. I

a.f. I

s .t "i

p.t.
i

n.f. 2

a.f. 2

s .t "2

p .t "2

n.f. 3

d.f. 3

s .t "3

P.t. 3
_07



In-plane forcin_ due to vertical aerodynamic forces. - Three rotor forces

contribute to the in-plane aerodynamic forcing functions, lift or thrust,

pitch, and roll hub moments. The blade forces contributing to these three

rotor forces are assumed to be concentrated at the blade 3/4 radius. The lift

is assumed to be uniform around the azimuth, the pitch and roll moments smooth

sinusoidal distributions as shown in Figure ll.

The assumption that rotor pitch and roll moments are applied sinusoidally

is a fairly good assumption. Should the forces in fact be applied at a dif-

ferent radial station, the effect on the in-plane forces would be small. For

example, if applied at blade tips, the blade forces would be smaller due to

increased radius but the in-plane moment would not change significantly be-

cause the in-plane moment arm increases to compensate. Should the forces be

applied other than sinusoidally, it is unlikely that there would be a signifi-

cant change in the 1P or 2P components of in-plane force.

The assumption that the lift is applied at the 3/4 radius is fairly good

at low advance ratio. At higher advance ratio it could be a poor assumption.

If the lift were applied, say, at the blade tips, the in-plane forces would

be much larger than if the lift were applied at, say, the 50% station. Fur-

thermore, the lift could be applied in a 2P distribution, or humps at opposite

sides of the disk; or it could wander radially as it traversed the azimuth

and still be a steady lift.

These assumptions are used here because they simplify the analysis and

certain evidence suggests that, in fact, they are not bad for many cases.

Aerodynamic forcing is generally a smaller contribution to in-plane general-

ized forces than are the coriolis forces and, therefore, can afford to be

less precise.

These assumptions allow the loading per blade to be written immediately

in terms of the Lift T, Pitch Moment M, and Roll Moment L. The lift on the

pth blade becomes:

T 2M cos (_ + _p) + 2_ _p)Lp = _ - .75Rb .75Rb sin (_ +

where p is the pth blade numbered clockwise viewed from above.
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LIFT, T

Y

MOME NT, M

Y

X

ROLL MOMENT, L

X

Figure Ii.

Y

Rotor Vertical Aerodynamic Force Distributions Assumed for

Calculating In-Plane Aerodynamic-Forcing

109



With the blade loads specified at each azimuth point, it is only necessary

to resolve them into components normal to and parallel to the inclined in-plane

mode principal axis to provide the generalized forces for the overall rotor

lead-lag modes and to the plane normal to the shaft for overall rotor rigid

body modes. For the former, the in-plane axis will be assumed to be inclined

proportional to the feathering displacement with the constant of proportionality

dependent on the rotor rpm.

IN-PLANE PRINCIPAL AXIS _.

ROTAT IO N .- _

I

The lift at a section is produced by two classes of angle of attack:

Class I - due to rotation of the section relative to the disk plane or shaft,

and Class II - due to precone, flap deflection, flap velocity_ and pitch, plunge

and roll rate of the disk. Only Class II angles-of-attack produce an inclina-

tion of the lift vector relative to the shaft axis.

Under the assumption that the cd is accounted for separately and the
o

section drag due to section lift is negligible, the lift (and resultant)

vector is normal to the flow at infinity relative to the sections.

For Class I angles of attack the lift, therefore, is directed parallel

to the shaft axes. Class I angles of attack are:

8o, 81c , 81s _ and 8tr

With the application of Class II angles-of-attack, even in the presence

of Class I lift, the total lift vector is inclined relative to the shaft axis.
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The inclination is equal to the sumof the Class II angle contributions at
the section. These angles are due to:

z, 60, 68, 6_, _, $ in stationary axes.SO,

Contributions to Class II angles-of-attack from rotor flapping velocities

in stationary axes 6o_ 6@, 6_ are neglected in these analyses because only

steady cases are considered. Aircraft pitch attitude "_" effects are included

with the z/V parameter.

The Class II angle-of-attack at station "r" due to the above is as fol-

lows:

I

WIND AT INFINITY _ SHAFT

REV£RSE FLOW i_
DISK PLANE 7

WIND AT INFINITY
ADVANCING FLOW

The angle-of-attack is the angle between the wind remote from the section (at

infinity) and the chord line regardless of the direction of the wind, advancing

or reverse flow. This results in one equation for each contribution which ap-

plies in both advancing and reverse velocity regions. The Class II part is

that part between the wind at infinity and the plane normal to shaft "_n'"

The basic blade motions and fixed geometry shape that contribute to the

Class II angle of attack, obtained from the stationary axes degree of freedom

motions, are as follows and depend on the azimuth location of the blade as

follows:
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V COS
8: (_n - 8 Ch?+ V sin

= _ _ rP: _n Car+ V sin

:_ _ 1
z: _n Qr + V sin

V cos

=_ 6ti p6: _n ,_r + V sin 4-

n - 6tip fir + V sin $

The net value of _ due to all Class II contributors then is obtained
n

by factoring the blade motion column matrix by the Class II angle of attack

row matrix.

Class II angle-of-attack at station "r" on the pth blade:

I I i

@np : _r + V sin ($ +@p) cos ($ +*p),, 7 V cos (* +,p)Ir,, Ii',
I | I I

In determining the _np the value of radius "r" to use in these

analyses is r = .75R (by basic assumption).

_o

6p

£p

It is now possible to calculate the in-plane aerodynamic forcing func-

tion. On the pth blade with aerodynamic "normal" forces indicated by "L "
P

and the angle-of-attack relative to the vertical axis, or shaft axis called

_np and the inclination of the in-plane principal axis given by Kef, the

in-plane force at the 3/4 blade radius is given by:

In-plane force

ef)Fip = L sin + K
p P

is shown resolved into the in-plane principal axes in Figure 12.
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IN-PLANE PRINCIPAL AXIS

SHAFT Lp ,

)_2
_ _ I an RELATIVE

i / __--"_ nP FWIND

J '--'l N-PLAN E FORCE Fi r __"__.._

P

Figure 12. Resolution of Section Lift into Blade In-Plane Principal Axis

F.

ip

the

blade twist at the three-quarter radius

It is assumed that a n + KSf remains less than iO °, so that
P

sin (anp+ Kef) _ (anp+ KSf), and Fip P = L P (an P + Kef P)"

The last piece of information needed to complete the calculation of the

is the value of ef It is obtained from the _z matrix by abstracting
P

8 p, the feathering pitch, and adding it to the collective pitch 8o and

8t',.75R, so that :

8f = 8 + ep o
P

+ et(.75R ) so that:

In summary, the expression for F.
zp

is as follows:

P

Fip : Lp (_n + K Sf )
P P
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where

2MLp = •75Rb

2L

cos (¢ + Cp) + @75_ sin (@ + @P)I

l I_]r + V sin (4 +@p) cos (¢*@p)_-_ V cos (@+@p),rl±!l ,
I'" i I I

K = In-plane principal axis factor

8f = e + 8 + .75R etp o
P

_O

6p

_p

With the in-plane forces on each blade at the 3/4 radius evaluated at

closely spaced azimuth positions, it is then necessary to organize these into

generalized forces on the blades and collect these into generalized forces on

the in-plane degrees of freedom in stationary axes.

It should be noted, however, that in the foregoing discussion the gener-

alized forces on the blade in-plane degrees of freedom were found. This free-

dom was inclined to the plane normal to the shaft by the angle K ef and the
P

component of aerodynamic force in that direction was employed in calculating

the blade generalized force.

For the rigid body degrees of freedom y, x and _, however, the blade

force component contribution to the generalized forces must be in the plane of

the disk normal to the shaft. It is therefore necessary to calculate two F.
ip

one for K = O and one for K.

This can be done as follows:

1.0

0

.75R

0

F.

IPPK = 0 +

fO

0

,0

_75R-e

F°

_PK
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and for the whole rotor these become:

.75R

0

0

0

•co

In-plane forci_ due to minim_ dra_ coefficient. - The in-plane forci_

f_ction due to blade section minim_s drag coefficient cA depends on the
o

nor_l component of d_a_c press_e qn and the blade chord c. For the pth

blade,

dr = cd c qn
o

= cA c _r + V sin (_ +

o

dn.f.

dr
dr

a.f. =0
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dn.f. r dr

dr

d n.f. (r-e) dr

dr

GFblad e I as a columnForm the 1

IGFblad e 1i

n.f.1

a.f
"i

s.t
"i

p.t "i

n.f. 2

a.f
"2

s .t "2

p .t "2

n.f
"b

a.f
"b

s.t
"b

p.t "b

The forcing functions on the stationary axes degrees of freedom are available

from

1oFfttiona i  ITI xylTI°Fbl
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Complete In-Plane Equations of Motion

The complete set of in-plane differential equations include the

homogeneousequations in stationary axes and the forcing functions produced

by vertical motions_ vertical equations aerodynamic forces, and section drag
coefficient.

verticalmotion
+ i XYivertical aero + GFxy drag coefficient.
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SOLUTION OF VERTICAL MOTIONS EQUATIONS

Linear ordinary differential equations of the vertical motions of the

rotor-gyroscope-airframe system have been derived in the foregoing section

for three-and four-blade rotors. Those coefficients of the equations which

depend on aerodynamics vary harmonically with azimuth at frequencies based

in the rotation rate of the rotor. The external forcing functions also vary

harmonically with azimuth.

In this section the equations are solved for the detailed harmonic or

vibratory response of the degrees of freedom. From these and the external

forces producing them_ the shaft-and swashplate-transmitted vibration forces,

the azimuthal variations of tip path displacement and, in the case of the

free swashplate_ swashplate harmonic tilt displacement wobble are determined.

Calculated and experimental results are compared where possible.

General Discussion

The solution of systems of linear ordinary differential equations of

motion possessing coefficients which vary harmonically with time is somewhat

more complicated than solving equations with constant coefficients. It is

the purpose of this section of the report to discuss the logic and

methods which permit the solution of such equations for their steady

oscillatory response to harmonically varying forcing functions. Such solu-

tions yield shaft-transmitted vibratory loads and blade load histories.

The basic logic will be illustrated by treating the simplest represent-

ative system of the type: an undamped single degree of freedom with period-

ically varying spring stiffness and forced at the period of the spring

stiffness oscillation.

Consider the equation:

w" + (A + B cos t) w = cos t
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where A and B are constants and w is the dependent variable. The solution

w must contain oscillations associated with the period of the oscillator and

the period of the coefficients. Since both are the same_w maybe represent-

ed by a Fourier series, if subharmonics are excluded. (later it will be
shownthat subharmonics cannot exist in a true steady state for these
equations ).

Let

W = a
o

then

and

+ als sin t + alc cos t + a2s sin 2t + a2c cos 2t + ....

= als cos t alc sin t + 2a2s cos 2t - 2a2c sin 2t ........

= - als sin t -alc cos t - 4a2s sin 2t - 4a2c cos 2t .........

substituting w and its derivatives in the equation yields:

-als sin t alc cos t - 4a 2 sin 2t - 4a2c cos 2tS o°.e.o,oeo,e,,leoe

+Aa o + Aals sin t + Aalc cos t + Aa2s sin 2t + Aa2c cos 2t ..........

2t
+Ba o cos t + Bals cos t sin t +Balc cos + Ba2s cos t sin 2t

+Ba2c cos t cos 2t + Ba3s cos t sin 3t + Ba3c cos t cos 3t

+Ba4s cos t sin 4t + Ba4c cos t cos 4t + ..................... cos t

It is important to note that each term, in which products of trigono-

metric functions are found, may be simplified to the sum at two terms of

single functions by trigonometric identities so that the above equations may

be simplified to:

- sin t als - cos talc - 4 sin 2t a2s - 4 cos 2t a2c ...............

Aa 0 + A sin t als + A cos talc + A sin 2t a2s + A cos 2t a2c .......
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B cos t ao + B(½ sin 2t) als + B(½ + ½ cos 2t) alc+ B(½ sin 3t

+ ½ sin t) a2s + B(½ cos 3t + ½ cos t) a2c + B(½ sin 4t + ½ sin 2t) a3s

+ B(½cos 4t + ½ cos 2t) a3c + B(½ sin 5t + ½ sin 3t) a4s

+ B(½cos 5t + ½ cos 3t) a4c ........................... = cos t

All terms in commonfrequencies are arranged in separate equations in

order to permit a solution for the coefficients. Equating coefficients of

commonfrequency:

(ao) (als) (alc) (a2s) (a2c) (a3s) (a3c)

i B : 0Aao - alc

(A-l)sin t als } B sin t a2s : 0

B cos t a° (A-l)cos talc _ B cos t a2c = cos t

B sin 2t als (A-4)sin ?t a2s _ B sin 2t a3s
= 0

I B cos 2t a 0
!2 B cos 2t alc (A-4) cos 2t a2c 7 3c =

In matrix form this becomes:

A 0 B/2 0 0 0 a°

0 (A-l) 0 B/2 o o hs

B o (A-l) o B/2 o hc

0 B/2 0 (A-4) 0 B/2 a2s

0 0 B/2 0 (A-4) 0 a2c

0

0

= _ I

It is obvious that the matrix could be extended to any desired number

of harmonics by analytic continuation, as in the following example, to four

harmonics.

121



-A/2 o B/2 o o o o o -

o (A-l) o B/2 o o o o

B/2 o (A-i) 0 B/2 0 0 0

0 B/2 0 (A-4) 0 B/2 0 0

0 0 B/2 O (A-4) 0 B/2 0

0 0 0 B/2 0 (A-9) 0 B/2

0 0 0 0 B/2 0 (A-9) 0

0 0 0 0 0 B/2 0 (A-16)

2a
o

als

ale

a2 s

a2c

a3s

a3c

a4s_

0

0

I

0

0

0

0

0

It should be noted that the matrix is symmetric and also that the sine

and cosine terms are not coupled to one another, thereby allowing the equa-

tions to be rewritten as follows:

n

A/2 B/2

B/2 (A-L)

BI2

B/2

(A-4) B/2

B/2 (A-9)

(A-i) B/2

B/2 (A-4)

B/2

BI2

(A-9)

B/2

12a

Ial(

]a2(

Ia3(

9

]al_

Ia2s

B/2 la3_

(A-16 {a4s

But of moreIn this particular case als , a2s , a3s , a4s ........... = O.

importance the harmonic sines and cosines may be solved for separately.

is a consequence of the absence of velocity dependent terms and does not

occur in general.

ol

il

ol

ol

_4

OI

Ol

ol

Ol

This

A property that does generally occur for the helicopter equations, how-

ever, is the fact that the forcing functions occur only in the first harmonic.

In the case at hand the forcing functions exist only in the first two rows,
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i.e., for the meanvalue and first harmonic. The equations of the higher

frequency componentsare not forced; so high frequency coefficients maybe

solved for algebraically in terms of low frequency coefficients, so that

ultimately the high frequency coefficients maybe expressed solely in terms

of the two forced coefficients. Choosing the set of equations to the third

harmonic allows the property to be illustrated, as follows:

"A/2 B/2

B/2 (A-l)

B/2

B/2

(A-4) B/2

B/2 (A-9)

2a o

alc

a2c

a3c

0

i

0

0

Eliminate a3c and a2e from the equation as follows:

[B/2]a2c + [A-9]%° _ 0

if a4c _ 0

". a3c _ [A_ 9]-I [B/2] a2°

(if a4c is neglegible)

and

[B/2] a:o + [A-4] a2c + [B/2] %_

a2c = - [[A-4] ' [B/2] [A-9] -1 [B/2]l. -1 [B/2] alc

0

0

The equations may then be reduced to two unknowns:

It is interesting to inspect the detailed structure of the (2,2) element
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It maybe expandedto any numberof harmonics

continuation and takes up the general form:

[[A1]

• I °

"n" by analytic

f_J_l[_A- _-_J - [_4[A-_tu,o_]-_[_J_2]-_
........]

The value of the (2,2) element converges very rapidly as additional

harmonics are included. Generally speaking three or four harmonics give

adequate accuracy to the mean and first harmonic term and sometimes to the

second. As an example, solve for the harmonic coefficients of

+ (A + B cos t) w = cos t

for A = 2.0, B = 1.0

First evaluate the (2,2) element with two, three, and then four har-

monics at cutoff.

Number of Harmonics

Considered

2

3

4

IO...QIImOOOlIO.lOOO.OlJOOOOl

[B/2] ...

Value of

(2_2) Element

1.125

i. 1272

i.12 727

The equations to solve become a 2 by 2 matrix system as follows:

2a o

ale
A/2 B/2 ]
B/2 (2,2)

and a = - ._ob
o

alc = 1.14

With the mean and first harmonic known, the expanded set of equations

may be employed to determine the next few higher harmonics approaching the

n cutoff limit, but of course not exceeding it.
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a2c = .2906

a3c : .0_28

The solution of the forced oscillation of the equation then becomes

w = - .285 + 1.14 cos t + .29 cos 2t + .023 cos 3t ..............

and is shown in Figure 13.

It is interesting to note that even though no mean force exists a mean

dLsplacement of the response occurs. J_hysically speaking, this is a con-

sequence _f the negative excursion of the sinusoi<_at force acting on a reduced

value of stiffness.

This process is important in explaining the large effects on the mean

aeroelastic derivatives of including the harmonic coefficients in the ver-

tical motions differential equations at advance ratios greater than unity.

Why there is no subharmonic response. - In postulating a form for the

forced response of the system with periodic coefficients the foregoing

discussion has shown how the higher harmonic coefficients of the response

are coupled together so that, in fact, an infinite series of harmonics exists.

It is logical to consider whether the system does respond also in a

subharmonic fashion. This question is answered in a straightforward way.

Assume the series to contain subharmonic terms in addition to the superhar-

monic so that it appears as follows:

w = .... al sin }t + al cos }t + a + sin t + cos t + .....
7s yc o als alc

= .... _i as/2 cos t/2 - _ ac/2 sin t/2 + 0 + als cos t - ale sin t +. Q

W = ... -_ as/2 sin t/2 -_ ac/2 cos t/2 + 0 - als sin t - ale cos t + ..

Substituting displacements, velocities, and accelerations in the dif-

ferential equations adds the subharmonics to the existing terms. They

become:
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Figure 13. Steady Oscillatory Response of a Forced

System With Periodic Stiffness



I t/2 - U ac/2 cos ........ - _ as/2 sin 1 t/2

.... A as/2 sin t/2 + A acl2 cos t/2 ....

.... B as/2 cos t sin t/2 + B ac/2 cos t cos t/2 ....

and expandedthey are as follows:

t/2 i t/2- as/2 sin - ac/2 cos ....

.... + A as/2 sin t/2 + A ac/2 cos t/2 ....

.... + B as/2 (} sin 1.5t - ½ sin t/2)

* B ac/2 (½ cos Z.5t + ½ cos t/2) ....

With all terms assembled together, the matrix becomes:

-A/2 o B/2 o . I
i

o (A-l) o B/2 .I

B/2 0 (A-i) 0 I

I
o B/2 o (A-4) i
• • • • J

I

I i B
_A-Ev[) 0 . ..

z B
i 0 (A-_+I) . .
I
l

2a TM "0TM

o

als 0

ale i

a2s 0

• I = 0!

--I o

as/ I o
_c/2 1 0

• j 0

It is evident that the subharmonics are not coupled to the superharmonics

in any way. They could only be excited by being forced separately, and in

this problem that subharmonic forcing is absent•

It may be concluded that a linear system forced at the period Of its

differential equation periodic coefficients possesses superharmonic response

by no subharmonic.
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It should be noted that the real system may not be strictly linear, and

in that case_ subharmonic response is a distinct possibility.
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Three- and Four-Blade Rotors

The basic method developed in the general discussion will now be applied

to rotors having three and four blades. The solutions will be similar ex-

cept for the inclusion of the rotor reactionless mode in the four-blade

solution. This mode, of course, does not exist for a three-blade rotor. The

method that follows will be developed primarily with a four-blade rotor in

mind, but may be adapted to the three-blade rotor simply by dropping the

matrix rows and columns associated with the reactionless mode and converting

the 4P terms to 3P.

The nine degree-of-freedom equations in stationary coordinates are as follows:

where the matrices contain the following terms:

[I ] inertia

[D]

[Ap]
[s]

[Ap]
[cs]

[As]

{MI

In addition to mean values, the aerodynamic derivatives contain terms

which are functions of k_t, 2b _t_ ........ , Nt_t, where b equals the number

of blades. The derivatives that are functions of 2k{]t_ ..... , Nt_t will be

negleeted_ since their values are sm_ll compared with those of the mean and

the b per rev harmonic terms.

mechanical damping and gyroscopic

aerodynamic stiffness derivatives

structural stiffness

aerodynamic damping derivatives

contains a centrifugal collective flapping force term due
to rotor precone

aerodynamic derivatives due to fixed angles and blade geometry

forces and moments applied to rotor and gyro
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The four-bladed rotor derivatives also have 2P, 6P, ..., (2 + 4N)P

harmonic terms. Those higher than 6P will be neglected as they are rela-
tively small.

Expanding the aerodynamic derivatives in terms of their harmonics while

combining structural and meanaerodynamic terms, equation (i) becomes:

[l]l'_I+ EO]+[E2c]COS 2at + [E2s]Sin _t + [E4c]COS 4_t + [E4s ] sin L_Qt

+[E6c]COS _Qt +[E6s]Sin _t]l#l+[[Fo] + [F2c]COS _t + [F2s ] sin _t

+[F4c]COS 4_t +[F4s]Sin L_t +[F6c]COS 6_t +[F6s]Sin 6_t] tBt = [[Go]

+[G2c]COS 2_t ÷ [G2s]Sin _t + [G4c]COS 4_t + [G4s]Sin 4_t + [G6c]COS 6Qt

+[G6s]Sin 6_t]lqF 1 + IMI (2)

(For three blades, equation (2) would contain only mean and 3P terms. )

Equation (2) must be solved for @, which is a function of time. Let @

be represented by a Fourier series:

+ cos _t + sin 2_t + cos L_t + sin L_Qt
B = B° 82c B2s B4c @4s

+ 86c cos 6_t + @6s sin 6_t + 88c cos _t + BSs sin _t

+ 810 c cos iEE_t + @lOs sin lO at + ...

The series will be truncated at the 14P term. Coefficients of the higher

harmonics will be negligible.

Equation (2) will be solved according to whether the swashplate is fixed

or free and the vehicle is free flying or has its shaft fixed.

Fixed-shaft, fixed-swashplate solution. - The vector of displacements

is as follows:
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@

Z

e

IBI= ¢
6
O

6e

6¢

6
d

where 6d is the differential collective mode (also known as the reactionless

or the self-balancing mode).

For the fixed-shaft fixed-swashplate solution:

B = @ = e = 0

%. = _ = e = 0

"2," = Z = Z =

"e" = 6 = o

_ = _ = o

@ and ¢ may take steady nonoscillating specified values. The body de-

grees of freedom are locked out of the equations. Thus the solution becomes

applicable to a vehicle rigidly mounted in a wind tunnel and controlled by

displacement inputs to the swashplate.

The displacement vector I B I may be divided into upper and lower portions:

Z

e

p

6o

6@

6d
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w erethe ivonval oofI "lis

0

0

e

¢

It is required to solve for the displacement vector I _ _ However

I_II is complicated by the reactionless mode. Its coefficients in the dif-

ferential equations include 2P and 6P components as well as the 0 and 4P

expected for the four-blade rotor. But since it is to be a steady oscillatory

response, each blade in turn must execute identically the same motion as the

blade ahead of it. It is clear, therefore, that hub moments, thrust, swash-

plate moments,-in fact all data measured relative to the stationary axes-must

contain only O, 4P, SP, etc, harmonics. This meansthatthe reactionless mode

must exercise vigorous 2P, 6P, etc, motion in rotating axes to attain a

stationary blade pattern in stationary axes. It should be possible, therefore,

in stationary axes, to represent the modal motions selectively as follows

rather than to employ all harmonics of all terms simultaneously. Let

I 8_I =

6 •

o

6¢ = u
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where

IB,u} 16u} 16uI+ 16u4oIcos_t +16_4sI_in_t
o

+16u8cIcos _t + 16u8_Isin_t + ....

and

t6dt = !%ct cos 2:_t + t%st sin 2nt+ t66ot cos_t

+ 16d6sl sin 6_t + ....

By similar reasoning, the last column and bottom rows of the [A_] and

[A_] matrices of equation (i) will contain only 2P and 6P terms of significance

(except for the on-diagonal term, which will contain only mean, 4P, and 8P

terms of significance). The bottom row of [AF] in equation (i) will also

contain only 2P and 6P terms of importance.

Recalling that

O

z

e

¢

6
O

60

6¢
-m_

°d

6u

equation (2) may now be rewritten in partitioned form:
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" o °

Ill : I12 I13

I21 ii22 I23

131 132 13_

f Ell El2

E21 i E22

//6Z_///////_,/////////_,

_E 1 : E 2__3 , 3_
",/////////,_////////,

"/_//////_,]t

±D_II

=.... _1 _1 --

_2_1_"6-u

E33 _ dl
II _'////"_

I

m • w

,//M/I/M_

ii iz :_ lJ_
Z Z

.............4_ ....
i ':_ _.

F_, F_ :_F,,_.

......_......

_F31: F32| F33

! o

f f_u "
._f.

Iz////ll/Z

I_6
I_ d_

G]

G_

_//////_

t'_} + (3)

The shaded areas contain 2P and 6P and lOP, .... only, all the rest

contain O, 4P, 8P, ....

This is permissible because I13 = I31 = 123 = 132 = 0 and the products

of (2P, 6P .... ) x (2P, 6P .... ) = 0, 4P, 8P, 12P ....

(2P, 6P .... ) x (0, 4P .... ) = 2P, 6P, 10P .... For the present solution,

the equations simplify to

IIi 112 O

......+ .....I......
: O

121 : 122 :

......_.....+.....
:13_:0 0

: i
Ell! El2 :El3

.....$......_......
E21 E22 E23

E
31:E32 E33

0

6u

6
d

"FII FI2 i ": FI3
I

l
F21 F22 : F23

!

F3i i F3_.: F33
)
dl

#

Gi ]
....... I

G2

G3

/Mltt FI ÷ "2
O'"

(_)
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Recall that the vector of applied momentsin equation (4) is:
p_

M

L

Me

Me

IM} may be redefined to represent reaction loads (aeroelastic response

loads). Thus the vector may be moved to the left-hand side of equation (4)

with no change in sign. Additionally, by moving the terms involving the

input vector IBu} to the right-hand side, equation (4) may be rewritten:

I!I
D

]12

122

0

0

0

I3:

%1
÷

-- °

El2 El3

E22 E2

#32 E3]

+12Fill1I"Fll_u % 1_1
F22 F23 6d = F21

F32 F33 G3. F31

IBu} (5)

Equation (5) may be separated into uncoupled upper and lower halves.

The lower half may be written:

22

u I F_.)2 F2 6u _ 2 IF211

I {Bu} (6)

This equation is the basis for determining the displacement vectors.

Once they are known, the aeroelastic response loads can be found from the

upper half of equation (5), which is as follows:

{M} =- [I12] {6"u} - [El2 El3] {:: t - IF12 F13 ] ::t

* [h]i Ff [E ]t ut (7)

where the complete right-hand side of the equation is known.
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Solution of forced equations of motion: - The problem now is to solve

for 6u and 6d, starting with equation (6).

6u = (6u)° + 6 cos 4_t + 6 sin 4Qt + 6 cos 8_t + 6 sin _qt +4c U4s U8c U8s

6 = 6 cos 2_t + 6 sin 2_t + 6 cos 6_t + 6 sin 6[_t + ...

d d2c d2s d6c d6s

The procedure is tedious but straightforward to solve for the values of

the coefficients of the series. Each matrix is expanded in its respective

harmonic parts. The series representing the solution is also expanded and

products of matrices and solutions are found and all terms of common frequency

and phase combined and a truncated solution found. This is shown in detail

in the following paragraphs.

First, abbreviate the notation for clarity:

Let

and

6u = B

6 = 6
d

subcripts

i
c = 2c

i
s = 2s

Therefore,

8 = 8
O

+ B2cl cos 2t I

6 = 6 1 cos t I
ic

B2sl sin 2t I + B4cl cos 4t I + B4s I sin 4tl+ ...

61sl sin t I + 63ci cos 3t I + 63si sin 3tI +...

and let the matrices be abbreviated.

E22 = M F22 = R

E23 = N F23 = S

E32 = p F32 = T

E33 = Q F33 = U
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Then equation (6) becomes:

(8)

The two components of the vectors and their derivatives are as follows:

= 8 + B2cl-Cos 2t I + 82s I sin 2t I + B4c I cos 4t I + B4sl sin 4t I
O "'"

= -2nlB2cl sin 2t I + _qlB2sl cos 2t I - 4_184ci sin 4t I + 4[]iB4s I sin 4t I

14
B = -4_1282c I cos 2t I 4_1282s I sin 2t I - 16n _4c I cos 4t I ...

2

16f)I B4sl sin 4t

= t I t1
6 61ci cos + 61sl sin + 63ci cos 3t I + 63si sin 3t I ...

= tI 3_163s-Ql61cl sin t I + Ql61sl cos - 3_163ci sin 3t I + 1 cos 3t 1

6"= -Q1261c cos t I QI261sl sin tI - 9_1263c I cos 3t I - _]1263si sin 3t I

and the matrices become

M = Mo + M2cl cos 2t I + M2sl sin 2t I

N = Nlcl cos tI + Nlsl sin tI + N3cl cos 3t I + N3sl sin 3t I

P =Plc I cos tI + Pls I sin t I + P3cl cos 3t I + P3s sin 3t I

Q--% +%cIoos2t + %sIsin2tI

For the R, U equations, substitute R, U for M, Q

For the S, T equations, substitute S, T for N, P

The work becomes two matrix equations in the two unknown vectors, _, 6

when expanded, in their harmonic components.
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Treating the B-Force equation first, matrix by matrix, yields the
following expansion from equation (8):

12 i
-$q 122B2cI cos 2t - 4_12122B2sI sin 2t I - 16_12122B4cI cos 4t I

+

Mo

- 16QI2122B4s I sin 4t I ....

+ M2cl cos 2t I + M2s I sin 2tl I -2_iB2c I sin 2t I + _iB2sl cos 2t I

-4n184c I sin 4t I + 4_iB4s I cos 4t I .... I
!

i i "i

[N_ i cos t + N_ i sin t + N_ i cos 3t + N_ i . __i] I ! tl
+L 4o 4o sln ._s.sj[4 61c I sin

I16 1 1 i i 1
+ _ isl cos t - 3f_ 63ci sin 3t + 3n 63si cos 3t + .....

[ ]{+ R ° + R2cl cos 2t I + R2sl sin 2t I B° + B2el cos 2t I + B2s I sin 2t I

+ B4c I cos 4t + B4sl sin 4t + ....

i I i i] I tl+ Slcl cos t + Slsl sin t + $3c I cos 3t + S3s I sin 3t 61ci cos

i i . 1 /

+ 61sl sin t + 63ci cos 3t + 63si sln 3t + ....1
+ V2cl cos 2t I + V2sl sin 2t I]=[Vo (9)

138

Treating the 6-Force equations yields, by expanding equation (8):

12 tI _Q1261sl i133 (Q 61ci cos - sin t - _1263ci cos 3t I - _1263si sin 3t I )

+ tI t I
(Plc I cos + Pls I sin + P3cl cos 3tl , P3s I sin 3t I) (-2_iB2c sin 2t I

+ _]lB2sl cos 2t 1 - 4_qlB4cl sin 4t 1 + 4fllB4s 1 cos 4t 1 ..... )

+ + tI
(Qo + _c I cos 2t I _s I sin 2t I) (-_161ci sin tI + _161sl cos

- _163ci sin 3t I + 3_163si cos 3t I ....)



+_iclcostl+Tlslsintl+T3clcos3tl+_slsin3t_)(_o+
B2c I cos 2t I + B2s I sin 2t I + B4c I cos 4t I + _4s I sin 4t I .... 1

+ (Jo + U2cl cos 2tl + U2sl sin 2tll 161el cos tl + 61sl sin tl

+ 53ci cos 3t I + 63si sin 3t I ...)

= [ tl tI
Wlc I cos + Wlsl sin + W3cl cos 3t I

CJ

(i0)

Expanding the terms of the 8-force and 6-force equations and employing

trigonometric identities to reduce all terms to harmonic sines and cosines

of the first degree allows a set of simultaneous equations relating the

coefficients of the Fourier series to be assembled. Each equation of the

set contains terms of one harmonic component only. Dividing each equation

by its harmonic yields a set which can be truncated and solved for the

coefficients, algebraically.

The set of equations may be written in the following order. In all

following work the Fourier series is truncated at 14P. This allows the vec-

tors to be described in terms of the following harmonics:

8: 8o' _2c' _2s' B4c' R4s' B6c' 86s

6: 51c , 61s , 63c , 63s , 65c , 65s , 87c , 67s
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Combining some of the A.. matrices yields:
mj

An] Bl2

B21 B22

B31 B32

BI3 BI4 0 0 0

m

O

B23 B24 B2 5 O 0 O

B33 B34 B35 B36 0 0

B41 B42 B43 B44 B45 B46 B47 0

0

0

0

0

where

B21]

B52 B53 B54 B55 B56 B57

O B63 B64 B65 B66 B67

0 0 B74 B75 B76 B77

0 0 O B85 B86 B$7

(6L)II

: [ A22 A23 ]
[ A32 A33

: IA21 ]
[ a31

: 161cll ;
61sl /

B58

B68

B78

B88

m

etc.

etc.

(6u) 2

(_L)I (FL)I1

(6u) 2 (Fu)2 I

(6L) 3 _:_ (FL)3y

(6u)4 o -
I
I

I

(6L) 5 O I

(6u)6 o j(6L) 7 0

(12)

I

: { } etc.

! 2slI

By virtue of the zero forcing functions in the 4, 5, .......... equations,

the matrix may be reduced even further for calculation of the harmonic re-

sponse, by eliminating the (6u) 4 , (6L) 5 , (6U) 6 , ......... terms in the

same fashion as shown for the one degree of freedom example. The reduced

matrix then becomes:
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All BI2 BI3 BI4

B21 BC22 BC23 BC24

B31 BD32 BD33 BD34

B41 BE42 BE43 BE44

(6u)o

(_n)l

(6u)2

(_L)3

_(_U)o]

(F_,)ll

I(_u)2

[(_L)3

(13)

and relationships of the following type allow the calculations of the higher

harmonic components :

(6u) 4 : C52 (6L) I + C53 (6u) 2 + C54 (6L) 3

(6L) 5 : C63 (6u) 2 + C64 (6L) 3 + C65 (6u) 4

(6u) 6 = C74 (6L) 3 + C75 (6u) 4 + C76 (6L) 5

(6L) 7 : C85 (6u) 4 + C86 (6L) 5 + C87 (6u) 6

(14)

where the BC, BD, BE & Cij are determined from values of Aij.

With the responses of the degrees of freedom found, it is possible then

to find the thrust, hub moment and swashplate mean and oscillating forces,

blade loads, and blade tip motions.

Hub moments, thrust and swashplate moments: - With the motions of the

degrees of freedom known it is possible to calculate the forces and their

harmonic components {M} from equation (7)

IMI :_ i12,,0 - El2,

-I

El3 1

--I

FI2
I _ } -

16-

(7)

and these equations may be expanded in terms of all harmonic components and

as before these may be arranged in order of the harmonics. Grouping ac-

cording to harmonics the equation takes on the following form:
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_M o

M4c

M4s

MSc [

!

MSs [

i

M12c I

DII

D41

D51

DSI

D91

DI2,1

DI3,1

DI2

D42

D52

D82

D92

D12,2

D
13,2

DI 3

D43

D53

D83

D93

DI2,3

DI3, 3

..Do 6u
O

6

L2c

6

L2s

^ I
4c __

6u

4s

Ll4c

Fo)ll--

(F4c)li

(F4s)ii

0

0

0

0

The form of the D's is similar to the A's of the A.. matrix.
mj

( 4c)i

(G4s) I

0

+

0

0

0

(15)

Tip path motions. - With the shaft and swashplate both fixed against

tilting oscillation, the only motions that occur in the rotor system are the

deflection of the blades. This section, therefore, sets out to show what

these deflections are over the range of advance ratio _ and flapping stiffness

ratio P for which these analyses are expected to be valid.

The calculations were performed employing the Lock number y = 4.57 of

the 33-foot rotor. The nondimensionalized blade tip deflection 6/R, however,

should be valid for any rotor, with any number of blades, if it has the same

value of Lock number.

Figures 14 through 16 show the variation of tip deflection as the blade

travels the azimuth _ for those fan_iles of conditions _ = .5, i.i, and 1.7

with members of each family of flappir_ stiffness ratios of P = 1.5, 2.0,

and 5.0.
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Figure 14 showsthe rate of change of tip path deflection with respect

to @ic' Figure 15 the rate with respect to @is' and Figure 16 shows the

residual tip path deflection occurring at @Ic = @is = 0 and caused by the

blade twist, rotor precone, and the small collective pitch, @75R = 1"5°
present in the tests of the 33-foot rotor.

Mean aeroelastic derivatives. With the fixed-shaft, fixed-swashplate

equations solved for the motions of the blades, it is possible to calculate

the shaft-transmitted forces, blade airloads, and flapping bending moments

and the input data required for the in-plane equations of motions. This

section of the report is concerned only with the mean values of the aero-

elastic forces transmitted through the shaft, the mean aeroelastic derivatives•

Mean aeroelastic derivatives of the rotor are commonly used in arti-

culated rotor helicopter stability analyses at low advance ratio. For

gyroscope stabilized hingeless rotors, especially at high advance ratio, it

is usually not satisfactory to separate overall body motions from those of

the rotor gyroscope system• This makes the concept of mean aeroelastic

derivatives of limited usefulness in these applications• Certain of the

derivatives, however, are easily measured in wind tunnels and provide an

excellent reference by which to judge analysis methods. It is for this

reason that they are treated here.

Theoretical and experimental values of rotor mean aeroelastic deriva-

tives are shown for the 33-foot three-blade rotor and the 7.5-foot four-blade

rotor. First the derivatives of hub moment, swashplate moment, and thrust

with respect to cyclic pitch for the 33-foot rotor, are discussed.

The theoretical variation of hub moment coefficient derivatives with

advance ratio _ and flap frequency P are shown as vectors in the X, Y plane

in Figures 17 and 18. The derivatives are applicable to rotors of any

size, numbers of blades, and blade geometry, provided they have the same

Lock number (V = 4.57) as the 33-foot rotor. Two sets of curves are shown.

The heavy lines show the effects of including the harmonic components of the

aerodynamic coefficients in the differential equations. The light lines

show the effect of leaving them out, as in the common practice with articulated
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rotors at low advance ratio. It is interesting to note that at advance ratios

well below unity, _<i.0, there is little difference between the two sets of
curves. This seemsto justify the commonpractice of leaving out the

periodic coefficients. At advance ratio greater than unity, _>i.0, however,
the effects of the harmonic componentsare very large. A large bumpde-

velops in the vicinity of P = 2.0, in the derivatives with respect to els ,
as the advance ratio increases above p = .8 so that the meanderivatives

becomemuch larger with the periodic coefficients included. With P<I.8 the

effects are large, but the derivatives with periodic coefficients become
smaller than their counterparts without periodic parts.

Comparisonsof theoretical meanaeroelastic derivatives with the experi-

mental values for the 33-foot rotor are shownin Figures 19 through 22.

In these plots the componentsof the derivative vectors are displayed

versus flapping frequency ratio P for tested values of advance ratio.

Small corrections have been madeto the experimental points to bring
them to commonvalues of advance ratio. There is general quantitative

agreementbetween theory and experiment but the fine structure of the

variation with P exhibited by the experimental data is not mirrored in the

theoretical results. This maybe due to too restricted a mathematical

representation of the participating vibratory modesin the theory.

In Figure 21, experimental hub pitch momentaeroelastic derivatives due
to longitudinal cyclic pitch for the 7.5 foot diameter 4-blade rotor are in-

cluded with the 33 foot rotor data for comparison. The derivatives are inter-

polated to produce values at advance ratio p = 0.5, 0.8, 1.1, and 2.0 and

are shownat four values of flap frequency ratio. It is interesting to note
that the 7.5 foot 4-blade rotor data at _ = 0.5 and 0.8 comparesvery favor-

ably with values measuredon a rotor of more than four times the diameter,

that possesses only three blades and has about half the solidity.

Figure 21 also shows a significant effect due to the blade first flap-

wise radial modeshape. The 7.5 foot rotor configuration with the stiff

flexure gives greater values of pitch derivatives, for the same_, _, and P,

than does the configuration with the less stiff flexure. The effects of the
modal differences seemto increase with advance ratio.
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Swashplate moment coefficient mean aeroelastic derivatives with respect

to cyclic pitch for the 33-foot rotor are shown plotted in vector form in

Figures 23 and 24. It should be noted that in addition to being

divided by rotor solidity _,as were the hub moment coefficient derivatives,

the swashplate moment coefficients are divided by the blade sweep angle A

and factored by the swashplate mechanical advantage k. These further

factors serve the purpose of making the derivatives independent of A and k

at low advance ratio. At high advance ratio the derivatives become a weak

OA (orfunction of sweep ratio, _ , because of reverse velocity

effects.

Swashplate mean derivatives variations with P and _ at V = 4.57 are

similar to those of the hub moments. The effect of the cant angle @o = 60°

between the blades and the swashplate is apparent in the approximately 60 °

counterclockwise skew of the derivatives relative to the hub moment deriva-

tives. As with the hub moment derivatives, deletion of the harmonic com-

ponents of the coefficients in the differential equations has little effect

at advance ratio less than unity and a large effect at values greater than

unity.

Comparisons of theoretical swashplate moment coefficient derivatives,

calculated with harmonic components included, with values measured

experimentally on the 33-foot rotor, are shown in Figures 25 through

28.

As with the hub moment derivatives the vector components are shown

versus flap frequency P at particular values of advance ratio _. Again the

agreement between theory and experiment is quantitatively good but the fine

structure of the experimental data is not seen in the theory.

The variation of the thrust coefficient C%/_ with cyclic pitch is

shown in Figures 29 and 30 over the range of P and _ for which the

theory is expected to be valid. The theory includes the effects of the

harmonic components of the aerodynamic derivatives. Agreement between ex-

periment and theory is better for the longitudinal cyclic pitch because of

its greater effect.
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The residual shaft force coefficients for the 33-foot rotor, or those

existing at 01c = 01s = _ = 0 and 0.75R = 1.5 ° , are needed to reproduce the

mean states in which the rotor was tested. Mean shaft force states may be

obtained by combining residual force with the forces produced by the two

cyclic pitch components of the test conditions desired.

The residual mean force coefficients, hub moment, swashplate moment,

and thrust were caused by blade twist, rotor precone, and the small col-

lective pitch angle 0.75R = 1.5 °. The theoretical variation of them with

flap frequency P at the specific values of _ tested are shown in Figures

31 through 35. Experimental values are also shown. Good agreement was not

expected and did not occur. The reasons for the poor agreement are thought

to be the following:

a. Flow distortion caused by the body

b. Centrifugal flattening of precone not adequately described by one

parabolic mode

c. Blade bending in the second flap mode due to blade twist aerodynamics

d. Induced inflow due to blade twist aerodynamics not accounted for

It should be noted that some of the residual forces could not be ob-

tained experimentally without overloading the rotor. They have been obtained

by extrapolating best fit plane (or rms plane)data to the zero cyclic con-

dition. To avoid giving a misleading impression, therefore, the residual

forces in conjunction with the mean aeroelastic derivatives have been em-

ployed to reproduce a mean state of interest - the condition of hub moment

trim (or zero hub moment). Cyclic pitch angles needed to trim the 33-foot

rotor hub moments to zero are shown in Figures 36. The actual test values

of 01c and Bls were centered about the trim values and generally did not

exceed 3° or 4° amplitude deviation from them.

Residual harmonic aeroelastic forces are discussed later and comparable

cyclic pitch values may be found to trim or minimize vibratory loads. The

7.5-foot four-blade rotor hub moment and thrust coefficient aeroelastic

derivative theoretical values, divided by solidity, are very similar to those
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of the 33-foot three-blade rotor. The difference, about i0_, is due to the

larger Lock number, _ = 5.0, of the four-blade rotor compared to that of the

three-blade rotor, _ = 4.57.

For this reason the theoretical derivatives hub moment vector diagrams

with respect to elc and _is are not repeated. In this section the hub moment

derivatives components of the vector diagram are plotted versus advance ratio

for the test values of flap frequency P.

The following derivatives are plotted:

_Cm/a bC_/a

bBls 8els

ae
0 0

a%/o

and comparison with experimental values is shown in Figures 37 through 44.

It should be noted that residual forces for the cantilevered blades with

no preeone are theoretically zero.

The 7.5 foot 4-blade rotor test procedure and experimental data are

discussed in detail in Reference 17.
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Oscillatory aeroelastic derivatives. This section of the report is

devoted to the presentation of calculated and experimental values of shaft

and swashplate - transmitted oscillatory forces for the fixed-shaft, fixed-

swashplate condition. Shaft shear force is a consequence of in-plane motion

and is discussed in the section on solutions of in-plane motion equations.

In the section on mean aeroelastic derivatives it was possible to

discuss three- and four-blade rotor results together, when suitably nondi-

mensioned, since the results did not depend on the number of blades in the

rotor. For oscillatory forces transmitted through the shaft and swashplate

however, the number of blades determine the frequency and amplitude of the

result. For this reason three-blade and four-blade rotors are treated

separately.

The theoretical and experimental results for the 33-foot three-blade

rotor are presented first. These are followed by the results for the

7.5-foot four-blade rotor.

The theoretical harmonic response aeroelastic derivatives of hub and

swashplate moment coefficient with respect to elc and els , divided by solidity,

are presented in vector diagrams for the 33-foot three-blade rotor. In station-

ary axes the hub moment oscillations contain only 3P oscillations but these are

conveniently thought of as having been produced by 2P advancing and 4P regres-

sive oscillations relative to coordinates rotating with the rotor. The 2P ad-

vancing contributions to the 3P stationary axis hub moment derivatives are shown

in Figures 45 and 46, and over the ranges of P and _ for which these analyses are

expected to be valid. Figure 46 showing the variations of the hub moment coeffi-

cient vectors, divided by solidity, with repect to @is shows that at low values

of advance ratio, say _ = 0.5 for example, and at low values of rotor blade

stiffness ratio, say up to P = 1.4, that the 2P contribution to vibratory force

is small compared to the mean hub moment produced, as seen in Figure 17. It

consists at P = 1.4 of nose-down pitch moment of about 1 12

whereas the mean hub moments generated at the same condition are 18_-_] = .3

L IS J

j = 34 o=not much more than about -_-of the mean hub moment.

o
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At P values typically employed in conventional hingeless ratio helicopters,

i.e., P = 1.2, the vibratory contribution wotdd be negligible.

It is interesting to note, still at _ = .5, that if P is allowed to

reach the neighborhood of 2.0 so that the first flap mode is in resonance,

producedthev ibratory[___icontribution=_.2can[___become larger=6 than the mean hub moments

h is J2c L is J2c "

Should the blades be made very stiff, say P = i0, then the vibratory

component reduces somewhat but not to as low a value as occurs at low P

values.

The same trends continue as advance ratio, m, increases except that the

vibratory contribution grows more rapidly than the mean moment capability.

The 2P vibratory response with respect to elc (Figure 45)follows the

same general trends as did the component with respect to 61s.

The theoretical hub moment 2P vibratory derivatives with respect to

elc and e ls , shown in Figures 45 and 46, are replotted separately in Figures

47 through 50 versus flap frequency ratio P for the several values of advance

ratio _ employed in the wind tunnel tests of the 33-foot roton In these

plots, comparisons are made with experimental data and it is seen that the

general trends are predicted well.

The 4P contributions to the 3P stationary axis hub moment derivatives

with respect to elc and els are much smaller and less well defined than the

2P contributions. They are displayed in Figures 51 and 52 in general areas

for each value of advance ratio, to the same scale as the 2P contributions

and are disassembled and displayed versus P in Figures 53 through 56 for

the tested values of advance ratio.

The experimental values are very small at low P values and larger at

high P values as are the theoretically predicted values, but agreement is

erratic.

The swashplate harmonic moment derivatives with respect to _ic and els ,

in the 2P contribution to 3P stationary axis moments, display similar behavior
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to the hub moment derivatives. As with the mean aeroelastic derivatives,

the 60 ° skewing of the swashplate derivative ahead of the hub values due to
o

the cant angle t° = 60 ° is evident again in Figures 57 and 58.

Figures 59 through 62 show the 2P components of the swashplate

derivative vectors plotted versus P at the tested values of _ and compares

them with experimental data. Although there are not many experimental points

the theory agrees in sign and order of magnitude with the experimental data.

The 4P contribution to the 3P stationary axis swashplate derivatives

with respect to elc and 61s are shown in Figures 63 and 64 . The detailed

variation with P is complicated but within relatively small areas at each

value of _. The areas are shown. The detailed variation with P and _ of

each 4P component is shown in Figures 65 through 68 compared to ex-

periment. Agreement is comparable with the 2P swashplate moments.

Rotor thrust oscillation due to cyclic pitch application is next shown

theoretically for the 33-foot 3-blade rotor - no experimental data is

available• Thrust oscillations occur in stationary axes as harmonics of the

product of number of blades and shaft rotation rate h_. Harmonics higher

than the first are believed to be very small for this rotor; therefore only

the first harmonic 3P components are shown.

The sine and cosine components of the thrust coefficient divided by

solidity, CT/_ , aeroelastic derivatives with respect to @ic and els , are

shown in Figures 69 through 72. It should be noted that at _ = 0 the

position of number one blade is aft.

It should be noted that the sine component due to @is and the cosine

component due to @ic both peak at a flap frequency ratio of P = 3.0.

The residual harmonic forces remaining when @ic = @is = _ = 0 and @.75R

= 1.5 ° are shown in Figures 73 through 82.

The two components, sine and cosine, of the thrust coefficients, divided

• = 2.25 °, areby solidity, CT/a produced by @.75R = 1 5, @t R = -9.43 ° , and S°

shown in Figures 73 and 74 versus flap frequency ratio P for values of

advance ratio _ tested. No comparison with test data, however, is available.
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Theoretical hub and swashplate coefficient residual 2P and 4P moments

are similarly displayed in Figures 73 through 82, and compared with ex-

perimental residual data.

It should be remarked, in concluding the three-blade case, that the

residual mean and harmonic rotor shaft forces may be combined with shaft

force derivatives factored by the appropriate cyclic pitch angles to fully

reproduce the complete dynamic state experienced by the 33-foot 3-blade

rotor under any tested condition.

In summary, a complete rotor shaft and swashplate moment and force

steady oscillatory state may be assembled for any combination of cyclic pitch

components, within the linear range, for the 33-foot 3-blade rotor from

plotted coefficients as follows:
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Follow the same rules as

C_m_m and CI
o

The nondimensional derivatives are applicable to any three-blade rotor

at the same values of _, P, and _.

Four-blade rotor oscillatory aeroelastic derivatives, in stationary axes,

contain harmonics of the product of number of blades and rotation rate b

or 4P. Higher harmonics 8P, 12P ...... are negligible and are not considered

in this report. The theoretical variations of the 4P sine and cosine com-

ponents of thrust coefficient divided by solidity, CT/O , derivatives with

flap frequency P and advance ratio _ are not shown. The derivatives with

respect to 01c and 01s , however, are much smaller and center about the 4P

resonance of blade flapping instead of the 3P as was the case with the three-

blade rotor. No thrust oscillation experimental data is available.

It should be remembered that sines and cosines are relative to ¢ = O

with blade number one pointed aft.

The theoretical variations with P and _ of the 3P advancing rotating axes

components of the 4P stationary axes hub moment aeroelastic derivatives with

respect to 01c and 01s are shown in vector form for comparison with the equiv-

alent components of the three-blade rotor, in Figures 83 and 84. Again the

components are somewhat smaller and centered about different blade resonances.

220



a (c_/o 13c/ae _c

I
RAD

-I .6

-I .2 -

-0.8 -

-0.4

0.4 4

0.8

1.2 B

1.6

-2.0

I I J l P 2,4 I

2.2

: /

//

-1.6 -1.2 -('.8 -0,4 0.4

(_m/°')qC/c_0 1C I/RAD

0.8

Figure 83- Advancing 3P Hub Moment Vectors at _ = O, Due to Unit

Lateral Cyclic Pitchs for 4-Blade Rotors with V = 5.0

221



-l ,2

P =4.0

\

P =3.4

/

I I I I I

P =3.2

P =3.0

\

\ --
\

/ \\
\ \ \
\ \
\ \

\
\

\
\

I \
I \
I \
I \

-I .2

Figure B_,.

-0.8 -0.4 0 0.4 0.8 _.2 1.6 2.0

8(Cm_I3C_81S,I/RAD

Advancing 3P Hub Moment Vectors Due to Unit Longitudinal

Cyclic Pitch_ at @ = O_ for 4-Blade Rotors with Y = 5.0

24

222



For comparison with experimental data, the pitch and roll components of

the hub moment cyclic pitch derivatives are replotted versus advance ratio

at the specific values of P tested and are shown in Figures 85 through 88.

All data is for a blade Lock number y = 5.0. In addition, the hub moment

component derivatives with respect to collective pitch e and rotor angle-o

of-attack _ are also shown in a similar manner and are compared with experi-

mental data in Figures 89 through 92.

Agreement of theory and experiment is quite good where the derivatives

are of large magnitude. For the 7.5-foot four-blade rotor_ blade twist and

precone were zero. Therefore rotor hub force residual harmonic components

were theoretically zero.
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Fixed shaft_ free swashplate. - Fixed-shaft, free-swashplate tests at

high advance ratio were performed only on the 33-foot 3-blade rotor-gyroscope

system. For this reason analyses are limited to this rotor configuration --

although the results are couched in a general fashion.

In discussing free-swasholate gyroscope-stabili_ed systems, it becomes

apparent that the rotation rate and size, or diametral inertia, of the gyro-

scope and the feathering inertia of the blades as well as the blade forward

sweep angle become important parameters. That is, as well as advance ratio _,

lock number _ and flap frequency ratio P, the major parameters needed to de-

scribe the fixed swashplate, fixed shaft response of the rotor, it is neces-

sary to consider further nondimensional parameters that control the free-

swashplat e behavior.

The most notable component of the motion of such systems, especially

those employing high speed gyroscopes, is the precessive mode of the rotor-

gyroscope combination. (The nutating mode natural frequency can be as high

as 2OP and is therefore not significantly excited, i

The precessive mode advances and in stationary axes is of low frequency,

typically of the order of P-I. If the ratio of its frequency to the shaft

rotation rate can be preserved, say in a scaled model test in which the ad-

vance ratio, flap frequency ratio, and Lock number of the blades have also

been preserved then the nondimensional feathering response, control mode

stability, and rotor loads of the full-scale rotor should be faithfully

reproduced.

The precessive or control mode natural frequency in stationary axes,

neglecting the effects of blade flapping_ is given in Reference 15 as:

_G blf

2--- IG +
2k _
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where _f = control modeundampednatural frequency rad/sec

_2 = rotor rotation rate rad/sec

_2G = gyroscope rotation rate rad/sec

IG = gyroscope diametral momentof inertia slugs ft ?

If = Io + A2 Ib = blade feathering moment of inertia slugs ft 2

k = mechanical advantage

b = number of blades

f = aerodynamic swashplate moment per unit swashplate tilt

ft-!b/rad

To preserve the ratio of control mode natural frequency to rotor rota-

tion rate _f/_2, it is only necessary to preserve the ratio_

_2 2 _ i IG + 2--_J

An approximate expression for f is given in Reference 14 for a three-

b

blade rotor. It may be factored by _ to make it approximately represent

rotors with any numbers of blades.

f

b _2 [i 2 1 2]
--- nAP cR 2 + +
3 7 7

Since m is separately preserved, no account of it is required in the

control mode preserving parameter. In addition, if the slope of the blade

section lift curve is expressed as "a" and replaces the 2w in the above ex-

pression, then the part of "f" dealing with
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maybe dropped from the expression leaving the parameter which preserves the

control modefrequency yf

_f
A @acR4

[L' i) c I o I f_:"-hi - k_ -- + 2----_ b

Feathering Lock number

It is also necessary to establish nondimensiona! ratios for blade

feathering friction CR and swashplate stationary axis d_nping Cs. These are
as follows:

C
R

k C
JR Ab P cr R4

k

C
s

and kC :
S Ab 9cr R4

k

where : Swashplate feathering friction in rotating coordinates
CR ft-lb/rad/sec

Cs : Swashplate dampin_ in stationary axes, ft-lb/rad/sec

In summary, the nondimensional motions, stability and response of any

free-swashplate, fixed-shaft rotor are defined if the following nondimen-

sional parameters describin_s the rotor-gyroscope system are known:

Advance ratio

Blade flap frequency ratio P

Blade Lock number

Blade feathering Lock number

Feathering friction coefficient

Swashplate damping coefficient

_f

kcR

kcS
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It should also be noted that, although not necessary for stability,
shaft-transmitted forces and higher harmonic blade motions and loads also

depend on the numberof blades b.

The solution of the equations of motions of the free-swashplate, fixed-

shaft system for motions and shaft transmitted forces follows:

For the free-swashplate solution:

= _= _ = 0

= $ = ¢ = O

= _ = z = 0

The swashplate tilt angles e and * are degrees of freedom, in contrast

to the fixed-swashplate solution of the previous section.

The two solutions differ mainly in the definition of the upper and lower

portions of the { _I vector. Since the swashplate tilt angles are now degrees

of freedom, they are included in the {_I vector:

®I

e

0/
6ol

6e

6,

6 d
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Note that:

0_
oi

aria:

f8

4,

I%1

_ Od

For solution; equation (3) simplifies to:

iIII IE 031

0 : S

0

,°

i I

r :i
• 1

ij

:

(16)

where:

T

Ms I
J
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The {_ i} vector of rotor loads will be movedto the left-hand side of
equation (16) with no change in sign, thereby becoming reaction moments. The

{_91 vector of swashplate momentswill be retained on the right-hand side,
in which case they remain applied moments. Equation (16) becomes:

lI[i::]uliJl3,9 + I., + E F:; "3

)' _ d F: 3o ; _3 H33 F 3 3 G 0

(17)

The preceding equation may be separated into two uncoupled parts. The

lower portion becomes:

+ +

I? E3: E 3 _ ' 1"33 %

(18)

from which the displacement vectors may be determined. The known displace-

ment vectors may then be used to get the response loads in the upper part of

equation (17), as follows:

{_/,} [_:] {:_:_} [_:r, _:_3] li,::l [rr r_3] l:':l * [c'd {_/F} (19)

The solution of equations (18) and (19) proceeds in like manner to the

prior section. The differences are minor and are due only to _he differing

matrix sizes and the somewhat different forcing functions of equations (6)

and (18).

Free-swashplate effects may be compared with those of the locked swash-

plate only if the calculated cases are similar. It would not be reasonable,

for example, to compare rotor shaft force derivatives, fixed and free, due

to collective pitch or rotor angle-of-attack. They would be basically differ-

ent due to the trimming effect of the free swashplate.
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For a valid determination of the higher harmonic effects of the free
swashplate on the shaft transmitted vibratory forces_ the fixed-shaft free-

swashplate system should be caused to change cyclic pitch_ one componentat a

time, by judicial application of swashplate control moments. A comparison
could then be madebetween the rates of change of shaft and swashplate

forces with respect to unit changes in cyclic pitch for the fixed and free

swashplates. Differences could then be logically ascribed to freeing the

swashplate.

The speculation that the swashplate motions, which should have

occurred during the tests, were suppressed by high values of swashplate

stationary axis dampingwas also investigated by calculating results with

kC = kC = O as well as with the nominal values observed during bench
te§ting, s

Tip path motions and swashplate wobble: - The rates of change of non-

dimensional tip path motions with respect to each of the cyclic pitch com-

ponents were not measurably affected by freeing the swashplat% even in the

absence of swashplate damping and feathering friction. In addition, the

swashplate wobble was very small.

This calculated result occurred at all conditions of rotor rpm and for-

ward speed for which the system was stable. Inspections of the experimental

data tended to confirm this theoretical finding. However, directly compar-

able cases were difficult to find and the result was obscured by the free

swashplate's ability to neutralize random very low frequency perturbations in

the flow field.

The theory and experimental data indicated that mean and oscillatory

aeroelastic force and moment derivatives for the stable rotor-gyroscope sys-

tem were not significantly affected by freeing the swashplate.

It should not be inferred from these results that no swashplate param-

eter V_ (feathering Lock number) and gyroscope inertia and rpm values exist

which will reduce vibration. Preliminary studies by Dr. G. J. Sissingh

(Reference 16) suggest that careful tuning of rotor-gyroscope systems can

result in reduced vibration. No attempt, however, is made in this study to

verify his predictions.
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Free shaft_ free swashplate. -- Solution of the complete rotor-gyroscope-

airframe equations for the motions, shaft-transmitted loads, and blade section

forces is the objective of the free-shaft, free-swashplate calculations.

These calculations are somewhat simpler than the previous analyses since

none of the degrees of freedom are suppressed.

The solution produces loads on free-flying aircraft in steady flight.

The body degrees of freedom of the system are not restricted.

This solution is the simplest of the three types of application. Again,

it differs from its predecessors mainly in the definition of the I _I vector.

In this instanc% I_u' ' which is a vector of the locked-out degrees of

freedom, does not exist. Thus:

r

Z

 Sdl
60

6o

6¢

6d

The solution will simplify to the form of equation (4) without the top

row and first column, which is:

O I33 E32  33J

For the present applications; the vehicle will be controlled by moment

inputs to the swashplate. Consequently there will be no loads applied to the

hub such that the loads vector becomes:
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f 0

0

0

0

0

, 0

Equation (19) is solved for the displacement vectors in like manner to

equations (5) and (18) of prior sections.

No aeroelastic response derivatives may be determined for the free-

flight cases.
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SOLUTION OF IN-PLAH4rE MOTIONS EQUATIONS

Stability of In-Plane Motions

Before undertaking the calculation of the steady oscillatory response of

the in-plane blade-hub-body-spring system to its external forcing functions_

it is advisable to examine its stability and modal behavior in the unforced

state. This is done by arbitrarily letting the right-hand side (RHB) of the

equation be zero. The left-hand set (LHS) or homogeneous equations may then

be solved for its eigenvalues, or frequency and damping, and eigenvectors_ or

mode shapes.

The damping characteristic of each mode of the system must be negative

for stability and the system must be stable for realistic calculations of the

oscillatory response to forcing functions. The natural or unforced frequen-

cies of the modes vary with rotor rpm and since the modes are stable but

lightly damped they experience resonance with rotor forces when their frequen-

cies coincide with the _b or 3 per revolution harmonics. The rpm's at which

the in-plane modes _ntersect the 3P line are therefore important since they

may lead to severe rotor loads.

The following sections present the values of the rotor in-plane param-

eters employed in the 33-foot 3-blade rotor analyses. Then the types of

modes such a system possesses and how its frequencies vary with rpm is

discussed.

In-plane parameters for the 33-foot rotor. --

Blade mass M b

Blade c.g. radial position r
c.g.

Position of blade pivot e

Blade moment of inertia, about shaft Ibshaft

Blade moment of inertia, about its pivot Ibpivot

Blade natural frequency_ nonrotating w.
ip.

= 2.52 slugs

= 9.00

= 2.50 ft

= 253 slugs ft 2

= 156 slugs ft 2

= 53.2 tad/see
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Blade section drag coefficient

Rotating hub mass

Rotating hub momentof inertia

Structural damping fraction

Body effective lateral mass

Body effective longitudinal mass

Body lateral spring

Body longitudinal spring

Cdo = O.011

_ = 17.8 slugs

IR = 6.72 slugs ft 2

= 0

M = 66 slugs
Y

M = ii0 slugsx

K = 68_,000 ib/ft
Y

K = 235, OO0 lb/ft
x

In-plane modes and frequencies. -- The number of modes equals the number

of degrees of freedom since the body is attached to the wind tunnel by springs

and is therefore not free.

The modes of the system at zero rpm consist of one rigid body rotation of

zero frequency_ one collective in-plane mode of high frequency_ in which the

blades and hub rotate in opposite directions and four blade-body lateral and

longitudinal modes.

The four blade-body modes are of greatest interest and at zero rpm are

real, or all elements in each mode keep the same relationship to one another

throughout the period of oscillation. The elements change amplitude ana sign

but keep the same distribution. The four modes are sketched in Figure 93.

The modes resemble two of those measured; however_ the frequencies cal-

culated are somewhat higher.

Modes of the rotating rotor, in stationary axes, contain real and im-

aginary parts. That is, the modes have different shapes at different times

during the period of oscillation. This variation can best be seen by exam-

ining the modal vectors in the imaginary plane. The actual shape at any

instant of time is given by the projection of the vector components in the

real axis. A construction of the real shape at regularly spaced intervals of

time provides a "moving picture" of the mode throughout its period.

The four rotor modes are shown in Figure 94 at rotor rpm of 250. Two

modes are practically uncoupled body modes and two are the rotor advancing
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and regressing modes. The fact that modes are advancing or regressing can be

determined from the vectors in the imaginary (i-r) plane by noting that they

keep constant magnitude while rotating counterclockwise or clockwise through

the period of oscillation. The projection in the real axis of the advancing

mode, for example, shows to be positive at the initial time so that the
x

mode essentially appears as follows:

I
x

One quarter of the period later
Y

shape appears as follows:

is positive and
x

I
Y

x

= 0 and the mode

It is obviou, that the blades are precessing in the same direction as the

rotor rotation or are advancing.

The variation of the unforced rotor frequencies with rpm is shown in Fig-

ure 95. It should be noted that modes intersect the 3P line at rpm = 128,

160, 220, and 275. Only the regressive mode intersection of 3P did not

excite measurable oscillations in the rotor. Large chordwise oscillations of

the blades were noted at the other intersecting values of rpm.
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BLADELOADS

The determination of blade section lift and flapping bending moment

azimuthal distributions from calculated rotor external forces and response

motions is discussed in this section. Theoretical flap bending distributions

are showncomparedto experiment at two radial stations on the 33-foot,

3-blade rotor.

For the fixed-shaft 33-foot rotor both experimental data and theoretical

results are analyzed so as to provide the rates of change of flap bending

distribution with respect to cyclic pitch componentsand the residual bending
distributions due to rotor fixed geometric parameters when cyclic pitch is

zero.

For the XH-51Arotor_ experimental azimuthal distributions are avail-

able from existing flight test conditions. These provided net or combined

effects of cyclic pitch and rotor fixed geometry for comparison with theory.

Correlation with the present theory was very poor and is not shown.

Principles Involved in Blade Loads Determination

Blade section lift and flap bending are found from the displacements_

velocities, and accelerations of the degrees of freedom produced by the

vertical motions differential equations when solved for steady oscillatory

response to external forcing functions.

Bending momentsat blade stations are not found from the curvatures of
the blade. Far too few modesare employedto make this a reasonable pro-

cedure. Bending momentsare found by integrating the aerodynamic and inertia

section forces factored by the momentarms to the station from the station to

the blade tip. The blade mode shapeprimarily affects inertia acceleration

and centrifugal forces. The aerodynamic forces are largely independent

of mode shape. For these reasons fairly accurate flapping bending moments
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were predicted at blade stations near the root at high rpm and at all stations

at low rpm despite the fact that only one flap bend_n@_modewas employed.

The actual procedure employedto calculate the blade loads azimuthal

distributions is indicated below for the three-blade rotor. A similar pro-
cedure was used for the four-blade case. The blade-force-at-station-r

column matrix is defined as follows:

IFb}r

BM

V

PM

FM

SL

bending momentat station r
shear at station r

pitching moment

feathering moment
section lift at station r

{Fb}r = [[_(r_9)] +[CFb(r)] ] {gbl + [Q_(r_%_)] {_bl

+ lib(r)] {% ] + [_(rl%_)] {_F}

Blade forces are calculated from blade deflections_ velocltles_ and
accelerations and external forces. The matrices in the blade force equation
contain the following terms

{_(r,}) aerodynamic, displacement contribution to blade
section forces

Q_(r,'_) aerod.vnamicvelocity contribution to blade section
forces

_(r_@) aerodynamic and inertia external forces

CFb(r) centrifugal contribution to section forces

Ib(r) acceleration contribution to section forces

Elements in the blade forces matrices are calculated in a way parallel

to that employed in calculating coefficients in the differential equations.

The vectors of blade b deflections Ub and fixed geometric shapes UF
are defined as follows:
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B

zl o
L O

I]b = _ , 7]F = o

6 b

Z

• g

The blade "b" vector and its derivatives are determined from the overall

rotor displacements_ velocities, and accelerations relative to rotor coord-

inates through the use of the restraining transformation matrices.

lib = [Dzb] 8R

:
and the motions in rotating coordinates depend on the motions in stationary

axes through the time dependent transformation IT] .

BR = T BS

8R : T BS + T 8S

and $S is the vector of degrees of freedom of the equation in stationary

axes; the output of the steady oscillatory calculations.

6

8S = 6o

60J

and is itself a function of azimuth.

8 = BO + B3C cos 3_ + 83s sin 3_ + B6c cos 6_ + B6s sin 6@
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Blade Flap Bending Moments, 33-Foot Rotor

Onthe 33-foot 3-blade rotor, flap bending momentswere measuredat
r = .217 and .596 (stations h3 and i18 inches respectively) at 80 knots
R

r

forward speed over a range <f rpm. At [ = .217, moments on the three blades

were analyzed and presented in nondimensional form. The measurements showed

a common basic behavior and provided a check on each other despite fairly

r

large differences between the blades• At _ = .596, bending moment measure-

ments were available only on blade number 2.

The test cases analyzed are shown in the follcwir#g table•

Forward

Speed

(Knots

80.59

92.76

82.78

82.68

82.88

RPM

197.2

153.2

100.2

72. i

38.0

.399

•528

•8o8

i .121

2.132

P

1.35

1.53

2. o3

2.64

4.67

4.57

4.5"i'

4.57

4.57

4.5Y

At each radial station for each test condition_ bending moment distri-

butions caused by approxLmately a dozen combinations of cyclic pitch were

analyzed. Best fit planes (rms fit) of each harmonic component versus the

two cyclic pitch angles supplied rates of change of bending moment harmonic

component with respect to each cyclic pitch component and a residual value

at elc = 81s = O.

From these, bending moment azimuthal distributions per unit value of

each cyclic pitch component and the residual were prepared. These were then

compared with theoretical values. All bending moments were presented in the
b

form _ Cb.m. where Cbomo is defined:

Cb .m.
bending moment

p(nR)2 _2 R
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For purposes of comparison the azimuthal distributions of bending moment at

the two radial stations due to longitudinal cyclic pitch els are shown in Fig-

ures 96 through 105 for the five tested cases in the order given in the table.

It is interesting to note, at high rpm, in the first two cases, that the

r
bending moment at _ = .596 is not correctly predicted at all, where, as the rpm

reduces over the last three cases, the agreement between theory and experiment

improves. This is thought to be due to the single parabolic mode shape employed

to represent blade flapping deflection. The tip region, at high rpm, would the-

oreticallybe deflected upward too far and would induce a negative bending moment

at a point in the azimuth where a positive bending moment occurred physically.

At low rpm, on the other hand, tip deflections and centrifugal forces are

very small and most of the blade bending moment is produced by aerodynamics.

Figures 96 through 105 also show the transition of the distribution from an

almost s inusoidal form at P = 1.35 and 1.53 to heavy two-per-revolution oscilla-

tions at P = 2.03. At the latter condition the blade is in damped resonance with

its 2P exciting forces. At the P = 2.64 condition light three per revolution

oscillations become evident and at P = 4.67 four per revolution become evident.

Figures 106 through 115 show the variation of the azimuthal distribution pro-

r
bending moment at _ = .217 and .596 due to unit lateral cyclic pitch 81c over the

range of tested cases. Remarks regarding the variations with longitudinal cyclic

pitch apply in general. However, the change in phase due to the change in cyclic

pitch component may be noted.

Figures 116 through 125 show the bending moment azimuthal distribution pro-

duced by precone _o = 2.25 degrees, blade twist etR = -9.43 degrees, and collec-

tive pitch 8.75R = 1.5 degrees, with cyclic pitch and angle of attack zero elc =

els = _ = 0. These plots include the centrifugally induced bending moment due

to precone and collective blade flapping_ 6o _ and at high rpm, the first
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two cases, are suspected of causing the deviation of the meanbending moment

from the experhnental values. At low rpm the eflect is not quite as
pronounced.

The residual flap bending momentdistribution roughly resembles the

negative of the bending momentdue to 81c. Trimming bending momentsto zero
therefore could be apprcximately accomplished by an application of positive

Oic•

Reference 3, Figure 5 show + elc to be the larger of the cyclic pitch
componentsrequired to trhn hub momentto zero, althou6h fairly large values

of - @is are also required.

In summary, the theory predicted the essential features of the ben_in_

momentdistributions at the inboard station at the five combinations of P
and _ tested at a Lock numberY = 4.57.
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CONCLUDINGREMARKS

I. A system of linear ordinary differential equations with periodi-

cally varying coefficients, forced by functions containing oscillation of

the sameperiod, has been derived to represent the flapping and associated
motions of a hinge]ess rot r, free-swsshDlate , free-airframe configuration
operating at advance ratio greater than .3 (_ > -3) and with its ratio of

blade flap frequency to rotor rotation rate greater than 1.3 (P > 1.3).

2. The system of equations has been solved for its steady oscillatory

response to the periodic forcing produced by cyclic pitch, collective pitch
and angle-of-attack, with someof its degrees of freedom suppressed. The

shaft-transmitted momentsobtained from the response were resolved into
meanand oscillatory aeroelastic derivatives and approximately agreed with

experimental data reduced and analyzed so as to provide equivalent
derivatives.

3. Shaft momentoscillatory aeroelastic derivatives agreed best with

experimental data whenthe blade natural flap frequency was in the vicinity

of the two-per-revolution excitation, in rotating axes, for the three-blade
rotor and in the vicinity of the three-per-revolution excitation for the
four-blade rotor.

4. Omission of the harmonic componentsof the coefficients in the

differential equation of vertical motion yielded approximately correct

meanaeroelastic derivatives, at all values of flap frequency ratio pro-
vided the advance ratio was less than about .8 (u < .$).

At advance ratio greater than .9 omitting the oeriodic componentsof

the coefficients caused the meanaeroelastic derivatives to be greatly in
error.

5. In addition to shaft forces, the equations of motion have been
solved for the azimuthal distribution of blade flapping bending moment.

The bending momentdistributives were computedfor unit values of cyclic
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pitch and compared with experimental distribution deduced from measured

data in an equivalent form.

Despite the fact that blade flap bending moments are sensitive to the

shape of deflection modes employed in the theory, and the theory of this

report used only a single parabolic deflection degree of freedom, bending

moment distributions calculated were quite similar to those deduced from

the experimental data.

Blade root region flap bending was approximated correctly at all tested

values of blade flap frequency ratio (1.3 < P < 5) at advance ratio greater

than .5 (_ > .5). Blade outer region bending moments, however, became

realistic only at large values of flap frequency ratio (P > 3).

6. A set of linear ordinary differential equations describing the

in-plane motion of hingeless rotor blade-hub-body-spring system were de-

rived and applied to the 33-foot 3-blade rotor. Theoretical modal char-

acteristics were compared with experimental.

Means of determining the in-plane forcing functions based on the

motions and forces of the vertical equations were discussed.
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